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Abstract 

Occupational safety remains of interest in the construction sector. The frequency of accidents has 

decreased in Sweden but only to a level that remains constant over the last ten years. Although Sweden 

shows to be performing better in comparison to other European countries, the construction industry 

continues to contribute to a fifth of fatal accidents in Europe. The latter situation pushes towards the 

need for reducing the frequency and fatalities of occupational accident occurrences in the construction 

sector. In the Swedish context, several initiatives have been established for prevention and accident 

frequency reduction. However, risk analysis models and causal links have been found to be rare in this 

context. 

The continuous reporting of accidents and near-misses creates large datasets with potentially useful 

information about accidents and their causes. In addition to that, there has been an increased research 

interest in analysing this data through machine learning (ML). The state-of-art research efforts include 

applying ML to analyse the textual data within the accumulated accident reports, identifying 

contributing factors, and extracting accident information. However, solutions that are created by ML 

models can lead to changes for a company and the industry. ML modelling includes a prototype 

development that is accompanied by the industry’s and domain experts’ requirements. The aim of this 

thesis is to investigate how ML based methods and techniques could be used to develop a research-

based prototype for occupational accident prevention in a contracting company. The thesis focus is on 

the exploration of a development processes that bridges ML data analysis technical part with the context 

of safety in a contracting company. The thesis builds on accident causation models (ACMs) and ML 

methods, utilising the Cross Industry Standard Process Development Method (CRISP-DM) as a method. 

These were employed to interpret and understand the empirical material of accident reports and 

interviews within the health and safety (H&S) unit. 

The results of the thesis showed that analysing accident reports via ML can lead to the discovery of 

knowledge about accidents. However, there were several challenges that were found to hinder the 

extraction of knowledge and the application of ML. The identified challenges mainly related to the 

standardization of the development process and, the feasibility of implementation and evaluation. 

Moreover, the tendency of the ML-related literature to focus on predicting severity was found not 

compatible either with the function of ML analysis or the findings of accident causation literature which 

considers severity as a stochastic element. The analysis further concluded that ACMs seemed to have 

reached a mature stage, where a new approach is needed to understand the rules that govern the 

relationships between emergent new risks – rather than the systemization of risks themselves. The 

analysis of accident reports by ML needs further research in systemized methods for such analysis in 

the domain of construction and in the context of contracting companies – as only few research efforts 

have focused on this area regarding ML evaluation metrics and data pre-processing.  

Key words: Accident report, accident causation models, construction, machine learning, prevention, 

health and safety. 
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1. Introduction 
This project focuses on identifying risks associated with occupational accidents within a Swedish 

Contracting Company, particularly those that result in injuries. 

Contracting companies have improved their processes and registration of accident reports. These 

improvements have been parallel to developments in regulations and the available software for 

accident registration. There is, however, a desire and need to learn from failures by analysing the 

accidents that are now reported more consistently. Moreover, new opportunities to gain knowledge 

about the causes of accidents through the registration database have emerged, together with the 

increased interest in and the capabilities of machine learning (ML), both of which could potentially 

improve accident prevention.  

1.1. Background 
The health and safety (H&S) units within large contractor organisations continuously report their 

internal accidents and near-misses (incidents) that have occurred on construction sites. The 

accumulated reports form a database that details the different types of accidents. In addition, 

production personnel such as the site managers and safety engineers have practical knowledge of 

accidents and their causes. However, it is seldom that these accumulated accident reports are analysed. 

Nonetheless, there has been a recent increasing trend within publications in accident prevention to look 

at this data using ML (Xu et al. 2021). These include applying ML to analyse the textual data within 

the accumulated accident reports in contracting companies and national registries, identifying 

contributing factors, and extracting accident information (Hegde and Rokseth 2020, Sarkar and Maiti 

2020, Khallaf and Khallaf 2021, Hou et al. 2021). 

ML, designed to find underlying patterns in a dataset, can be used to predict situations that may pose 

the risk of accidents at construction sites (Baek et al. 2021, Vallmuur 2015). ML systems automatically 

improve their built-in functionality through experience (Jordan and Mitchell 2015). The use of ML – 

a subdivision within artificial intelligence (AI) - in a construction context is now being seen as a 

promising development (Vallmuur 2015, Kifokeris and Xenidis 2018, Pan and Zhang 2021). Another 

key tool in understanding the accumulated data is data mining, which is understood as "the process of 

discovering interesting patterns from large amounts of data" (Han et al. 2011).  

Vallmuur (2015) reviewed eight ML system examples that analyse the database of registered 

occupational accidents. The ML systems use Bayesian networks (BN), decision trees (DT) and 

association rule mining. Examples of using ML in the prevention of occupational accidents are 

becoming more common within relevant published research studies (Hegde and Rokseth 2020). 

Algorithms such as DT, Random Forest (RF), Stochastic Gradient Tree Boosting (SGTB), artificial 

neural network (ANN), and natural language processing (NLP) for data pre-processing (Vallmuur 

2015, Witten et al. 2016, Hegde and Rokseth 2020, Hou et al. 2021) can be used to analyse the data of 

injury cases. The purpose of the latter type of analysis includes the prediction of accident types, 

classification of causes, and information extraction. It is important to note that in this thesis, the author 

terms a "prototype" as the designed digital software that suggests a precise implementation for ML-

based data analytics, i.e., that shows means of application and an interface that is ready for use.  
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Despite the attention being paid to the importance of safety in the workplace, the building industry has 

the highest frequency of fatalities (Arbetsmiljöverket 2021). Moreover, the rate of fatal injuries has 

not decreased since 2019 compared to other industries (such as transport and warehousing) 

(Arbetsmiljöverket 2021). The frequency of accidents (number of accidents / 1000 employees) has 

levelled out in the last decade, hanging roughly at around 11 (Byggforetagen 2021). The accident types 

show a rather complex and scattered pattern: body movement with physical overload (18%), injuries 

from tools and gear (16%), collapse, falls and rupture of material (12%), falls from a height (12%) and 

falls at the same level (tripping) (12%). Although Sweden's figures are better than other European 

countries (e.g., France, Portugal, and Germany), the construction industry accounts for one-fifth of all 

fatal accidents at work in the EU. Of these fatal accidents, 27 occurred within the construction sector 

(Eurostat 2018). There is a need to reduce the injury frequency and fatalities in the construction 

industry. 

The construction industry is characterized by high complexity, uncertainty, and interdependence 

(Berglund et al. 2017). This situation creates difficulties in operational planning and creating a safe 

and disturbance-free workflow. An agenda for safer construction has been pursued by both 

practitioners and researchers alike. Multiple routines and approaches exist in Swedish projects and 

companies (Törner and Pousette 2009). Accident prevention research has developed several risk 

analyses and accident-related causal models (Behm and Schneller 2013, Berglund et al. 2017, Harms-

Ringdahl 2013, Jørgensen 2002, Reason 2008). Some of these models systematically distribute 

different levels to different causes and systematize causes in a fault-tree analysis or a hierarchical 

analysis, assuming that multiple causes drive accidents. However, the use of such causal links is rare 

in the Swedish construction sector (Berglund et al. 2017). Safety in construction is affected and/or 

hindered by conditions such as the construction site's organization, management (Törner and Pousette 

2009), equipment, and materials (Berglund et al. 2019). Those change from one workplace to another, 

making it more difficult to maintain sufficient, common safety routines (Albrechtsen and Hovden 

2014, Lingard et al. 2012, Schwatka et al. 2016). In addition, safety and the safety culture are affected 

by several factors such as subcontractor and the main contractor cultures, organizational decision-

making regarding safety considerations, and individual behaviour (Koch 2013, Zhou et al. 2015). 

This thesis assumes that it is possible to prevent accidents by systematizing the learning and knowledge 

accumulated from registered accidents by investment in the latest digitization technology – in this case, 

ML (Berglund et al. 2017). However, IT research that implements ML data analysis can lead to 

changes not only for a company but for the entire industry (Bilal et al. 2016, Bilal and Oyedele 2020). 

Applying ML does not only include the development of a prototype, but also to address the industry 

requirements and collaborate with industry experts and ML analysts (Bilal and Oyedele 2020). 

Regardless, the current literature lacks concrete use cases and the required integration with domain 

and expert knowledge (Vallmuur 2015, Bilal et al. 2016). The aforementioned collaboration with 

domain experts needs an understanding of the context or the domain of the application and explaining 

the ML models to the humans involved (Gilpin et al. 2018). This thesis contributes to exploring 

development processes that bridge ML data analysis technical part with the context of safety in a 

contracting company. In understanding the context, the Cross Industry Standard Process Development 

Method (CRISP-DM) is of interest (Martínez-Plumed et al. 2019). CRISP-DM is a methodology 

consisting of six steps that catalogue and guide the process of data mining projects (Martínez-Plumed 

et al. 2019). Moreover, accident causation models (ACMs) are of interest in explaining ML models. 



3 
 

According to Kjellen and Albrechtsen (2017), ACMs are the "simplified representations of the 

processes in the real world that result in accidental loss" (p.25). ACMs are mature theoretical, 

conceptual models that have impacted the development of safety management methods and processes 

(Kjellen and Albrechtsen 2017). 

1.2.  Aim and research questions 
This thesis aims to investigate how ML-based methods and techniques could be used to develop a 

research-based prototype for occupational accident prevention in a contracting company. The thesis 

focuses on exploring a development process that bridges ML data analysis technical part with the 

context of safety in a contracting company. The research context is accident prevention and H&S 

activities on-site, with the company being the case for the prototype development. The main (primary) 

data source is the registry of accident reports of the case company. Secondary data collection was 

undertaken through interviews with the company’s H&S unit.  

It is important for both business and academia to understand the use and the obstacles in introducing 

advanced technologies such as ML. Such understanding can benefit the construction industry through 

improved safety performance and better accident prevention strategies. As discussed earlier, this 

industry-wide interest in improving safety measures has been evident in the literature. 

Therefore, this research project contributes to the development of ML for analysing accident reports 

and exploring methods for building a prototype to improve occupational accident prevention strategies 

while considering the context. The context of the contracting company and its safety processes are the 

targeted application domain for the digital system. The ML analysis is based on the data generated by 

different actors in the case company and is intended to be applied within its safety processes. 

One overall research question and sub-questions were posed based on this research aim. 

Overall research question: Does the application of ML on accident reports reveal new knowledge 

about accidents in the construction industry? 

RQ1: What are the requirements for applied ML in the domain of accident prevention in a contracting 

company’s occupational safety processes? 

RQ2: What is the role of accident causation models (ACMs) as a theoretical framework for the ML 

results of analysed reported accidents in the construction industry – and what can be learned about 

ACMs through ML? 

RQ3: What are the experiences and challenges of applying CRISP-DM’s business understanding to 

assure a solid contextual embedding and an appreciation of local dynamics? 

RQ4: What are the predictive attributes of accidents based on the application of ML to accident 

reports? 
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2. Theoretical framework 

2.1. Accident causation models (ACMs) 
ACMs may provide a foundation for accident investigation and feedback and, most importantly, 

highlight accidents’ causal factors (Kjellen and Albrechtsen 2017). Moreover, ACMs were developed 

and adjusted over the last 100 years, resulting in different ACMs having their own characteristics 

(Pillay 2015, Fu et al. 2020). Thus, ACMs are different in causes representation and the logic behind 

the occurrence of accidents (Fu et al. 2020). 

ACMs can be classified in different ways, such as linear and non-linear models according to the logical 

sequence of events that lead to accidents (Fu et al. 2020). Fu et al. (2020) further categorized the non-

linear models into human-based, statistics-based, energy-based (e.g., the Bow-tie model, and the tripod 

beta model), and system-based (Systems Theoretic Accident Model and Processes (STAMP), 

AcciMap), while linear models included the Swiss cheese model (SCM), Heinrich domino theory, and 

the HFACS. 

Kjellen and Albrechtsen (2017) distinguished between seven main ACMs categories. The 

categorization by Kjellen and Albrechtsen (2017) included causal-sequence models (the domino 

theory, the tripod model), process models (Occupational Accident Research Unit (OARU), Haddon’s 

phase model), the energy model (the Swiss cheese model), logical tree models (fishbone diagram, 

Construction Accident Causation (ConAC)), system models (HFACS, MORT, AcciMap, STAMP).  

The inclusion of models in Kjellen and Albrechtsen (2017) and Fu et al. (2020) demonstrates the 

complexity and diversity of ACMs, primarily evident in the difference in the typology of causes, levels 

of causes, the relationship between the levels, their application, and the mechanism within which 

events take place. 

According to Woolley et al.’s (2019) categorization, accident causation models have three main 

categories based on their characteristics and their time of development: 

• Simple linear models (1920s) 

• Complex linear models (1950s–1990s) 

• Complex non-linear models (1990s to present) 

The simple linear models (e.g., the domino theory) represent the view on accidents as being predictable 

through a chain of events and that they could be prevented if one of the root causes was eliminated in 

the sequence of that chain of events (Woolley et al. 2019). This category usually concentrates on 

physical/mechanical and human error (Woolley et al. 2019). However, it is criticized for the lack of 

distinction of uncertain causal relationships at the personal, organizational, and management levels 

(Kjellen and Albrechtsen 2017). 

Complex linear models (SCM, the Loughborough Construction Accident Causation Model, and the 

Causal Model of Construction Accident Causation) view the accident as being caused by the 

interaction between latent factors and unsafe human behaviour (Woolley et al. 2019). The SCM argues 

that accident causes can be traced back to the origins of organizational decision-making (Kjellen and 

Albrechtsen 2017). Although complex linear models introduce the organizational factors, they also 
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retain the sequencing of events and do not include factors outside the organization (Woolley et al. 

2019).  

Complex non-linear models took a broader view of system-related factors (Woolley et al. 2019, Kjellen 

and Albrechtsen 2017) as a response to the growing complexity and tighter couplings in industrial 

domains. System-based models (Fu et al. 2020, Kjellen and Albrechtsen 2017) are now surpassing the 

previous ACMs through their systematic and thorough concentration on managerial and organizational 

factors and their interaction with individuals, technology, and behaviour. System-based models assume 

the responsibility of everyone within the system (including politicians and regulators), and accidents 

are claimed to have been caused by the dynamic and non-linear interaction among multiple factors 

within the entire system (Woolley et al. 2019). 

The development of ACMs initially focused on human behaviour within sequences of events. More 

recently, ACMs have tended to explore the more dynamic approach and consider higher levels of 

causation (Pillay 2015). This development seems to be based on the assumption that higher levels of 

causation can explain accidents. Moreover, the different types of ACMs assume stochasticity in 

accident severity since the accident impact level is not differentiated within any of the reviewed 

models. ACMs break down to multiple causation levels that are primarily not assigned weights for 

their importance but portray the interplay of causation factors as either single-rooted and linear, 

multiple-linear, and having multiple and dynamic causes. 

In construction research, applied causation models range from technological and behavioural models 

(e.g., the domino theory) to the more advanced socio-technical and cultural models (e.g., the 

Loughborough construction accident causation model, the fault tree analysis, and the Swiss cheese 

Model) (Pillay 2015). System-based models were, in contrast, hardly, if ever, used in the published 

literature dealing with accident causation analysis within the construction sector (Woolley et al. 2019). 

The scarcity of system-based models points to the limited inclusion of governance and regulatory 

factors in accident analysis (Woolley et al. 2019). When system-based models are applied to analyse 

accidents, regulatory and governance factors are often overlooked (Pillay 2015). For example, physical 

processes, actor activities, equipment and environment, unsafe acts, and management decision-making 

are more prominent in system-based accident analysis in multiple industrial contexts rather than 

regulatory and other governmental factors (Hulme et al. 2019).  

The limited inclusion of higher levels of causation hampers the understanding of whether the 

predictability of accidents increases from the advanced growth in the interactions of causes and the 

inclusion of factors outside the organization and limit benefits in prevention (Grant et al. 2018). They 

also act to hinder identifying the relationship between factors (Woolley et al. 2019). Since accidents 

persist in the construction industry, there is a need to revisit theories and models of accidents’ causation 

and critically reflect on applied ACMs in construction – especially set against the quantitative data that 

is now being derived from many registered accidents. 

2.2. Machine learning (ML) 
Machine learning is defined as the “computational methods using experience to improve performance 

or to make accurate predictions” (Mohri et al. 2018). Experience refers to existing information mostly 

available in a digital form of data (Mohri et al. 2018). ML is also defined as a set of methods that 

automatically detect patterns and use those to predict future data (Murphy 2012), while according to 
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Carbonell et al. (1983) “the study and computer modelling of learning processes in their multiple 

manifestations constitutes the subject matter of machine learning.” 

ML includes different types of learning: supervised and unsupervised learning are the main ones 

(shown in Figure. 1), but there is also semi-supervised learning, transductive inference, online learning, 

and reinforcement and active learning (Shalev-Shwartz and Ben-David 2014, Mohri et al. 2018, 

Murphy 2012). 

 

 

 

 

 

 

 

 

Figure 1. Machine learning summary. 

• Unsupervised learning is a method of data exploration or description used for, among other 

things, clustering (Shalev-Shwartz and Ben-David 2014, Mohri et al. 2018, Murphy 2012). In 

unsupervised learning, there are no specific patterns to be followed or an error metric (Murphy 

2012). Clustering can partition or group a set of objects into homogeneous subsets and is 

usually used in analysing large datasets (Mohri et al. 2018). The same sequence of objects can 

be clustered differently depending on the algorithm used; therefore, unsupervised learning does 

not always provide steady results (Shalev-Shwartz and Ben-David 2014). Another feature of 

unsupervised ML is that checking for accuracy and interpretation is subjective and requires 

expert knowledge for examining the results and inference (Shalev-Shwartz and Ben-David 

2014). 

• Supervised learning is an approach that learns a mapping from input to output and is used 

mainly for prediction (Murphy 2012). The input can be referred to as features, attributes, or 

covariates. At the same time, the output can be either categorical (a classification or a 

categorical problem) or numerical (a regression or ranking problem) (Murphy 2012). The data 

should be already labelled (input and output variables are known and identified through pre-

assigned categorization). The purpose of using this type of learning is to predict or classify the 

labels of future examples as accurately as possible (Mohri et al. 2018). Moreover, supervised 

ML can be used in prediction or classification algorithms and assessed by calculating the 

potential loss in finding false instances (Shalev-Shwartz and Ben-David 2014). 

• Semi-supervised learning is when the data is partially labelled and commonly when the 

unlabelled data is accessible but labelling the data unattainable (Mohri et al. 2018) or when the 

labelled part is used to infer the unlabelled part (El Naqa et al. 2019). 
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The ML model process 

The ML process usually consists of multiple steps: 

• Data exploration  

• Data pre-processing 

• Model training 

• Model validation 

• Model testing 

It is important to note that the author of this thesis term an ML model as the specific mathematical or 

computational description that expresses the relationship between a set of input variables and one or 

more outcome variables studied or predicted. 

Data exploration entails gaining knowledge into the attribute types (e.g., nominal or numerical), the 

entries contained in each attribute, and the distribution of the input and the output features (Han et al. 

2011). Data pre-processing ensures data quality for a reliable ML analysis and consists of multiple 

tasks – including handling missing values, noise, and resolving inconsistencies and discrepancies (Han 

et al. 2011). Discrepancies might originate from the data entry form, human errors, system errors, and 

other reasons (Han et al. 2011). The data is then split into the training, validation, and testing datasets 

(Shalev-Shwartz and Ben-David 2014). The training data should not be used in testing the model to 

find out whether the ML model performs as well with data points that have not been used in its training 

(Han et al. 2011). The validation step is used to tune the model’s parameters for the ML algorithms 

(Han et al. 2011). 

The testing of ML performance depends on the type of ML problem and the employed algorithms. The 

Receiver operating characteristic (ROC) curves and the F1 measure are usually used in classification 

problems (Han et al. 2011). The F1 measure is based on the confusion matrix depicted in Table 1. TP, 

FP, FN, and TN stand for true positive, false positive, false negative, and true negative, respectively 

(Japkowicz and Shah 2015). In binary classification tasks, the class of interest is called the positive 

class while the other is the negative class (Gopal 2018). Accordingly, TP and TN are the accurate 

classifications that the algorithm achieves. FP and FN are referred to when the algorithm inaccurately 

classifies a positive when it is a negative in reality and a negative when it is positive, respectively 

(Gopal 2018). The latter can be variously combined to calculate specific performance metrics, as in 

the following (Japkowicz and Shah 2015, Han et al. 2011): 

Accuracy=(TP+TN)/(P+N) 

Precision=TP/(TP+FP) 

Recall= TP/(TP+FN) 

F1 measure= (2. Recall. Precision)/ (Recall + Precision) 

It is common that accuracy does not sufficiently evaluate a model's performance, such as in cases of 

data imbalance (Japkowicz and Shah 2015). Precision and recall also have shortcomings in showing 

how a classifier behaves in terms of showing the detailed negative and positive recognition (Japkowicz 

and Shah 2015). Alternatively, the ROC curve is another method for testing the performance of an ML 

algorithm when accuracy, precision or recall fall short (Han et al. 2011, Japkowicz and Shah 2015, 
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Gopal 2018) – e.g., when false-negative classifications are costly (such as in disease diagnostic 

applications). The ROC curve takes paired measurements of false-positive rates on the x-axis and the 

true-positive rates on the y-axis, with the highest value being 1 (Han et al. 2011). 

Table 1. A generic confusion matrix 

True class Positive Negative 

True positive TP FP 

True negative FN TN 

Supervised and unsupervised learning have different algorithms characterized by different structures 

and application types (El Naqa et al. 2019). Supervised ML is more interpretable, testable and 

applicable when available data is labelled (Murphy 2012, Mohri et al. 2018). Furthermore, supervised 

ML algorithms can be organized into linear and non-linear models. 

Linear Models 

Linear regression (LR) and support vector machines (SVM) are linear algorithms that can be used for 

regression or classification (Shalev-Shwartz and Ben-David 2014). LR is a simple model without 

parameters to control model complexity (Ray 2019). However, if the data is not linearly separable, LR 

is not best to fit the data (Shalev-Shwartz and Ben-David 2014). Instead, a polynomial regression 

(which fits a non-linear function although being a statistical estimation problem) can be used (Shalev-

Shwartz and Ben-David 2014), but the polynomial model is more complex than LR, and there is a risk 

for overfitting (Hawkins 2004). SVMs work by separating the dimension space into two classes in the 

case of a binary classification task (Shalev-Shwartz and Ben-David 2014). The margin of a hyperplane 

that separates the data is the smallest distance between a point in the training set and the hyperplane 

(Shalev-Shwartz and Ben-David 2014). This margin limits the performance of the linear SVM; if the 

margin is larger, the error decreases because the model becomes more tolerant to the disturbance in 

the data points. The SVM is regularized with using the parameter C – large values of C (smaller 

regularization) allow the model to fit the training data even in the case of a smaller margin, while larger 

regularization makes the model more tolerant to errors on individual data points (Bhavsar and Ganatra 

2012, Singh et al. 2016). 

Non-linear models 

K-Nearest Neighbor (KNN) is one of the simplest ML algorithms used for regression and 

classification. It assumes that the close-by instances are likely to have the same labelling (Shalev-

Shwartz and Ben-David 2014). The parameter K can take different values starting from 1, and then the 

algorithm looks at the single closest instance label to predict the label of another instance. The smaller 

K is, the more complex the model, and there is a risk of an overfitting decision boundary (Bhavsar and 

Ganatra 2012, Singh et al. 2016). The disadvantages of KNN models are the sensitivity to 

dimensionality (which can affect the algorithm’s performance) (Shalev-Shwartz and Ben-David 2014) 

and the compromise of accuracy because the algorithm assigns equal weights for the features and the 

sensitivity to the local structure of the data and the value of K (Bhavsar and Ganatra 2012). 

Kernelized support vector machines (KSVM) are a variation of SVM that transform the data into a 

high dimensional space to allow for a linear classification for a feature space that is not linearly 

separable (Shalev-Shwartz and Ben-David 2014). KSVM are highly sophisticated models and one of 
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the most accurate models in binary classifications (Bhavsar and Ganatra 2012). On the other hand, 

DTs are characterized by the easy interpretation by simply visualizing the entire tree. However, feature 

importance rankings do not indicate which classes are predicted by a feature or the relationships 

between features (Singh et al. 2016). Moreover, the sample complexity of DTs might result in growing 

very large trees (deep trees) that are prone to overfitting (Shalev-Shwartz and Ben-David 2014). This 

situation, however, can be prevented by controlling the size of the tree by applying a reduced-error 

pruning method (Lee and El Naqa 2015). Random forest (RF) is a classifier consisting of a collection 

of DTs (Shalev-Shwartz and Ben-David 2014). The DTs within RF are built with random sample 

variations that are bootstrapped by a random feature split selection (Lee and El Naqa 2015). Although 

RFs are generally more accurate than simple DTs, they can be unstable, produce local optimal solutions 

instead of global ones, and have sampling errors (Ray 2019). 

Artificial Neural Networks (ANNs) are computational models inspired by the structure of the brain’s 

neurons and have recently reached high performance in different learning tasks (Shalev-Shwartz and 

Ben-David 2014). There are two main types of ANNs (feed-forward and back-propagation). Feed-

forward networks – also called multi-layer perceptron (MLP) – take the idea of computing weighted 

sums of input features (like in logistic regression) but introduce a processing step that consists of 

several neurons as a hidden layer (hidden units) (Shalev-Shwartz and Ben-David 2014). The MLP 

complexity is affected by the number of units, layers, regularization and activation function (Lee and 

El Naqa 2015). Backpropagation has the same structure as an MLP but backwards learns the network’s 

weights by employing a gradient descent to minimize the squared error between the network outputs 

and the target values of these outputs (Gopal 2018). 

The characteristics of the previously presented ML algorithms are summarized in Table 2. The table 

characterizes the ML algorithms in strengths – represented in a plus sign – and weaknesses – 

represented in a minus sign. The table can be used to choose ML algorithms based on the task’s 

requirements. This contributes to a systematic and informed choice of algorithms instead of the 

experimental approach. 

Table 2. Summary of ML algorithms characteristics  

Algorithm NB SVM KSVM DT RF KNN LR LogR 

Interpretability + + - + - + + + 

Parameters tuning + - - + + - + - 

High dimensionality + + + + - - - - 

Feature dependability - + + - + + - - 

Generalization - + + - + + - - 

Accuracy - + + - + + - + 

Small data set + - + + + + - - 

Large data set + + + - + - + + 

Linearity - - - - - - + - 

Low dimensionality + - + + + - + + 

Dobbe et al. (2018) suggested that bias might originate from multiple sources when data is used in ML 

decision-making models. First, measurement bias can originate due to how the collected data is scaled, 
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and the people registering their entries are represented. The modelling bias is affected by the 

engineering of features and the selection of the model classes. These processes include reconstructing 

a complex phenomenon in a finite data sample. The optimisation bias is related to the model builder 

choices of designing and optimising the parameters of the ML algorithms, which affect the outcomes 

or decisions the model produces (Dobbe et al. 2018).  

Dobbe et al. (2018) explained that the origins of bias acknowledge the need for understanding the 

epistemology of the specific context, and the role played by the creator of the ML model. Also, when 

applying ML to research in social sciences, Radford and Joseph (2020) suggest a “theory in” and 

“theory out” approach. Theory in means that known theories about a phenomenon should be 

considered in the pipeline for research that uses ML in analysing social data. A problem and task 

definition should rely on the knowledge gap in what is already known about the social world, starting 

from the conception of an ML model. Thus, theory help in identifying which problems are worth 

solving and frame why a problem is important. Moreover, theory help to define the ML outcome that 

validly captures the construct sought to be measured (Radford and Joseph 2020). Theory out refers to 

considering the model’s interpretability, explainability and theory building beyond the model’s 

technical parameters – in other words, using theory to understand why the model learned what it did 

and what can be learned about the world based on its results (Radford and Joseph 2020). Theory 

building here refers to the new knowledge about the social world that can be discovered from the 

results of our model (Radford and Joseph 2020). The implication of the latter described approach is 

that an ML model needs to be developed by supporting the relevant theories throughout the ML 

development process. 

One of the most famous models in ML industrial applications is the Cross Industry Standard Process 

Development Method (CRISP-DM) (Martínez-Plumed et al. 2019). CRISP-DM consists of multiple 

steps (business understanding, data understanding, data preparation, modelling, evaluation, and 

deployment) (Martínez-Plumed et al. 2019, Figure 2) 

 

Figure 2. The CRISP-DM process model of data mining (Martínez-Plumed et al. 2019). 

These steps can account for a contextualisation of the developmental process, starting with the initial 

step of business understanding. The business understanding plays a role in defining the business 

objective and offering a systemised process to mitigate the dependence only on data experimentation 
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(Chapman et al. 2000, Martínez-Plumed et al. 2019). The business understanding consists of four sub-

tasks: determine business objectives, assess the situation, determine data mining goals, and produce a 

project plan (Chapman et al. 2000). 
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3. Research design 

The approach chosen in this research is interpretive, where reality is deemed as the construction of the 

interaction between the researcher and the research (Alvesson and Sköldberg 2017). This approach 

assumes a reflexive research methodology that typically arises when different levels or elements of 

interpretation are played out against each other, and when none of the research components gains 

dominance throughout the entire research process (Alvesson and Sköldberg 2017). Reflexivity 

encourages creativity through the movement between different philosophical profundities and other 

empirical research elements (Alvesson and Sköldberg 2017). To follow a reflexive research 

methodology, multiple paradigms that are associated with this research were identified similar to 

mixed method approaches (Creswell and Clark 2017) – namely, the literature and texts, the empirical 

material, ACMs and the ML theory. 

The research is mainly interested in understanding and interpreting ML methodologies and techniques 

as a process to develop ML models to be applied in existing practice. The research aim is motivated 

by the need to bridge the technical ML analysis and the context of the application that involves people. 

The focus here is on the H&S unit as both a generator of the accident reports dataset and the end-user 

of the ML intended prototype. The H&S unit consists of safety engineers, safety representatives, site 

supervisors, site managers, safety managers and safety strategists. The qualitative interpretive research 

is aligned with the research aim to cultivate interpretation and reflection as key elements of reflexive 

research (Alvesson and Sköldberg 2017). The premises of this research method is derived from the 

view that how researchers interpret phenomena is always perspectival and that facts are always theory-

laden (Alvesson and Sköldberg 2017). 

According to Alvesson and Sköldberg (2017) method, reflexive interpretation consists of four levels 

– namely, interaction with the empirical material, interpretation, critical interpretation, and reflection 

on text production and language use (p.331), also called the quadruple hermeneutics (p.122). ACMs, 

ML algorithms, and CRISP-DM provide the multiplicity needed in the interpretive approach - as 

illustrated in Figure 3.- each of these is used for interpreting the data analysis results. The formulated 

research questions are accordingly generated to support interaction across the aforementioned 

theoretical framework and the empirical material.  

The primary data collection was done through the digital reporting system used by a contracting 

company: Synergi Life. Complementary data collection was done through twelve interviews with the 

H&S unit within the contracting company. Accident reports are highly dependent on the reporters, 

especially their interpretations of how accidents and their causes should be described (Dekker 2015). 

Thus, the challenges and opportunities of developing an ML-powered prototype and implementing it 

in the safety processes within the case company are ultimately dependent on the prevailing perceptual, 

theoretical and cultural assumptions within the case company. For the development and analysis of an 

applied ML model, the CRISP-DM (Cross Industry Standard Process Development Method) is chosen 

as a development process method. CRISP-DM is also used as a framework to understand the H&S 

objectives and identify ML utilisation propositions. 

Mainly, primary data is analysed through the application of ML algorithms. ACMs is chosen as the 

theoretical framework for interpreting the ML model results. ACMs components that describe accident 

occurrences are used to contextualise and conceptualise the results of the ML analysis. 
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The critical interpretation level stems from the reflection on ACMs from the perspective of existing 

ML literature by a comparative analysis of the components and assumptions of ACMs against the 

components and assumptions of existing ML models. Moreover, the experience of conducting the 

CRISP-DM’s business understanding analysis through the interviews was utilised to explore the fit of 

CRISP-DM to develop ML with the H&S unit. 

The researcher finally reflects on their assumptions about the phenomenon and the limitation of the 

repertoire of interpretation. 

Level of interpretation                                            Reflective themes 

Empirical material/ 

Construction of data                                             Accident reports/Interviews                                                                        
 

 

Interpretation 

 

 

Critical Interpretation          

 

 

 

Self-critical reflection 

 

 

Figure 3. Illustration of reflexive methodology based on levels of interpretations (the quadruple hermeneutics, 

Alvesson & Sköldberg 2017). 

3.1. Research process 
The research process consists of the four steps described in paper I, paper II, and paper III summarised 

in section 4 and ML results described in section 5. The papers and data analysis were conducted 

sequentially, represented in a process graph shown in Figure 4. Each paper provided a background for 

the contribution and the development of the following paper. 

The first step was to review the existing body of literature to identify the requirements for applied ML 

in occupational accident prevention within a construction company. This first step in paper I 

investigates the possible development requirements for an ML model to be implemented in 

occupational construction safety. The reviewed literature provides an in-depth and detailed exposition 

on the uses of ML in analysing accident reports, and is synthesised in terms of used algorithms, data 

characteristics, data processing, and purpose and scope of the ML models. 

Consequently, paper II was designed to investigate the role of ACMs as a theoretical framework in 

ML application for analysing accident reports in the construction industry. A framework of 

understanding the ML results should be established to place causes in meaningful categories – and 

The multiplicity in interpretation stem from the analysis of 

the data guided by ACMs, ML, and CRISP-DM.  

The critical interpretation produces another level of 

analysis on the theory level. 

• ACMs interpreted against ML. 

• CRISP-DM interpreted against interviews. 

• ML interpreted against ACMs. 

Reflect on research own assumptions based on limited 

repertoire of interpretations.  
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vice versa, to contribute to learnings about ACMs obtained through ML. The work is carried out in the 

form of a comparative desk study of the literature covering the application of ML to accident reports 

in the construction industry and ACMs. This contributed to providing a conceptualisation of ML 

models through the lens of ACMs’ components. 

After the means of understanding ML results through ACMs was established, the need for a systemised 

ML development method ensuring the contextual embedding led to the use of the CRISP-DM method 

for understanding the context of accident reporting in the case company, and analysing the experience 

and challenges in applying the “business understanding” stage (Martínez-Plumed et al. 2019). Paper 

III centres on five interviews with a safety strategist and four safety engineers at the case company in 

Sweden to answer this research question. Paper III contributed both to the identification of ML 

utilisation proposals that meet the needs of the H&S unit, and also adds value to accident prevention 

measures. Seven further interviews were conducted after paper III was published to gain further 

insights from different actors within the H&S unit of the case company. 

The fourth step finally provides an ML analysis of accident reports from the case company based on 

an ML model design and interviews analysis. This work builds on the learnings and conclusions of 

papers I, II, and III. Furthermore, the continuation of the interviews contributed to decisions related to 

the purpose and design of the ML prototype. It is important to note that this thesis has not realised a 

prototype. However, paper I, paper II, paper III and the ML data analysis are all paving the path of the 

prototype development process. 

 

 

 
 

 

 

 
 

 

 

 

 

Figure 4. Research process. 

3.2. Case description 
This thesis's primary interest is in embedded accident prevention in the business setting. The contractor 

operates a project-based organisation. The building project is the most important value and turnover 

generator and cost transformer. The different building projects are produced in portfolios placed in 

divisions with slightly different business objectives, i.e., civil works, residential buildings, office 

buildings. The project commences with a contract with a client. The H&S work commences by 

documenting how H&S will be organised in the project in a bid for the customer. Typically, no risk 

RQ1: What are the 

requirements for 

applied ML in the 

domain of accident 

prevention in the 

construction 

industry’s 

occupational 

safety? 

 

RQ2: What is the role 

of ACMs as a 

theoretical framework 

for the ML results of 

analysed reported 

accidents in the 

construction industry, 

as well as what can be 

learned about ACMs 
through ML? 

RQ3: What are the 

experiences and 

challenges of 

applying CRISP-

DM’s business 

understanding to 

assure a solid 

contextual 

embedding and an 

appreciation of local 

dynamics? 

Paper I 

Literature review 

Paper II 

Comparative 

literature analysis 

Paper III 

Interviews H&S 

Complementary analysis  

ML data analysis 

RQ4: What are the 

predictive attributes of 

accidents based on the 

application of ML to 

accident reports? 



15 
 

analysis is carried out by the safety engineers (SEs) this early; however, this is done once a contract is 

obtained. A particular job role, called BAS P (educated in design safety), is part of this process. From 

the beginning of work planning, the SEs inspect the plans with an H&S perspective. During 

production, the safety representatives (the so-called BAS U personnel – basic education for 

production) are responsible for a particular part of the building project and the building process. They 

collaborate with the on-site H&S, Quality, and Environment (HES) manager and the SEs. Together, 

they constitute a horizontal element of the H&S organisation and support the similarly horizontal 

building processes. H&S work is thus organised close to the single building project. Apart from this 

horizontal element, the company also encompasses a vertical hierarchy, where H&S is attached to 

several organisational levels. A central H&S unit is part of a corporate management HR unit. HES 

units are adjacent to several organisational levels. This cross-organisational H&S apparatus works with 

behaviour issues, analysis and reporting, digitalisation, and developing directives. In it, it is a common 

perception that accidents are mostly due to behaviours, so efforts are targeting this issue. Another 

workstream is related to analysing and reporting, digitalisation, driving projects, and the way the 

company benefits from machines and innovation. The third workstream is related to developing 

directive processes and procedures. 

3.3. Collection of empirical material 
Below I elaborate first of the more quantitively oriented collection of date emanating from the accident 

reports, moving on to the rich knowledge and information in the interviews. 

3.3.1. Accident reports 

The accumulated accident data have a common method for registering and analysing single 

occurrences of accidents in the construction industry. The case company’s data is mostly gathered by 

safety engineers, site managers, safety representatives, and workers. Accidents are registered through 

a digital software interface called Synergi Life, which is a complete quality, health, and safety risk 

management software package. Accident reports were extracted by the researcher into excel sheets and 

initially investigated in excel. 

The software package offers the option of recording four types of reports: 

• Accident: An event that led to personal injury. 

• Incident: An unwanted, sudden event that could have led to a personal injury. 

• Negative observation: An unwanted situation or risk that could have led to personal injury. 

• Positive observation: A positive action or solution that has led to better health or safety. 

The reporting process consists of four steps:  

1. Registration, which is possible to be made by anyone working at the case company (either on 

the desktop or the mobile application software versions).  

2. Appointment of a case handler. 

3. Filling in the case with either investigations or a required action. 

4. Closing of the case, which needs to be done by the health and safety unit. 

The accident report consists of seven main sections (see Appendix). 

• Where, what and who. 

• General classification. 



16 
 

• Consequences. 

• Potential loss. 

• Causes. 

• Prevention. 

• Attached documents. 

The data contains two forms of reporting: free text describing the accident, and pre-populated drop-

down list options for causes, processes, consequences of severity, and personal injury-related 

information. The dataset contains 3,626 cases of accidents. The data status varies in terms of complete 

entries for every available case. Monetary loss information was only entered 109 times out of all cases, 

and prevention comments were only reported for 365 cases. Description of injury type was entered for 

only 139 cases. Moreover, there are usually two levels of entries: a general category and one that is 

more detailed- such as for the injured body part, the category of injury, Specific physical activity, and 

injury type. 

The entered data shows that a number of entries did not belong to a known category, such as in injury 

type level 1 (310 cases) and specific physical activity level 1 (205 cases). Moreover, it is observed that 

the level of detail varies between the general level and the more detailed levels of the reported fields. 

The more detailed levels of “type of work in detail” contain 149 unique categories of entries, the 

“external factor that affected the incident” contains 159, and the “work process” contains 149. 

Although these accidents report mainly describe the accident by pre-populated drop-down lists, the 

reporters select the causes and other information using their understandings. Dekker (2015) argues that 

the epistemology of accident descriptions implies that reporters can have different narratives for the 

same event, depending on multiple factors (such as the reporter’s perspective and experience). 

3.3.2. Interviews 

The interviews were considered a secondary source of empirical material that was complementary to 

the accident reports. The semi-structured interviews were conducted in a thematic format to explore 

and gather information and knowledge about accident reporting. Thematic semi-structured interviews 

are useful in exploring a particular organizational issue, and are characterized by connecting a series 

of questions within a particular theme (Cassell 2015). The intention behind the interviews was to gain 

an insight into the perspectives of the H&S unit on the meaning of safety (in general), the accident 

response process, the quality of collected reports, and the expectations from an ML-based prototype.  

Mainly, the ML-related questions and discussions were formulated based on the business 

understanding framework of CRISP-DM (Chapman et al. 2000) and the recommended practice (RP) 

framework (DVN GL AS 2020). The intention for this formulation concerns developing an ML 

prototype situated within the needs and perspectives of the H&S unit with the explicit purpose of 

improving awareness of accident prevention measures within the case contracting company. 

Interviews were chosen to provide the actor’s point of view on the needs of safety process and site 

accident prevention. The interviewees were selected based on the mapping of the H&S unit of the case 

company, as shown in case description section 3.2 and Table 3. 

The interview guideline was organized into four thematic sections. The first focused on a background 

of position and experience, and the second on the meaning of safety and a description of daily safety 
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processes. The third part included questions about the reporting regarding assigning causes, levels of 

causation, credibility, quality, and overall value of reporting accidents. The fourth part investigated the 

potential for improvement in relation to accident prevention, based on learnings from or the utilization 

of accident reports. The questions then targeted the anticipated added value of a potential ML 

application, potentially benefitted users, advised propositions, work-process constraints, risks, and 

ethical considerations. 

Table 3. Interview respondents and position 

Positions Respondents 
Safety engineer 4 

Safety representative 4 

Site manager 1 

Site supervisor 1 

Safety manager 1 

Safety strategist 1 

 

3.4. Analysis of empirical material 

3.4.1. Interview’s analysis 

The interviews were analysed using a qualitative method combining Kvale & Brinkmann (2009) 

approach to analysing interviews with Alvesson and Sköldberg (2017) reflexive methodology. The 

themes of the interviews were organized based on the themes of the interview’s questions.  

• The meaning of safety at the contracting company 

• A normal working day 

• The response in the event of an accident 

• The reporting of accidents 

• Status of the data use and safety objectives 

• The value of reporting of accidents and improvements 

• Improvement in the safety process for accident prevention support 

• Value proposition 

• ML potential 

• Proposals and ML risks 

• Satisfaction with the reporting 

• Success criteria for a prototype based on the reports’ data 

The analysis of the interviews was done in an iterative manner, where the interview questions were 

modified based on the gained insights from the previous interviews. The interviews continued until 

the responses began to be repeated and reached a state of saturation (Schutz 1972). Drawing on 

reflexive methodology in this context meant critically reflecting on the respondents’ utterances, 

placing them in an organization and societal context and finally reflecting about the researcher own 

role and position - inspired by Alvesson and Sköldberg (2017) concept quadruple hermeneutics. 

3.4.2. Machine learning design 

3.4.2.1. Understanding the data structure 

The dataset can be characterised as relational, namely a collection of records in tabular format 

(sometimes called “relations”) with columns that denote data features, and rows that indicate 
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individual observations of instances (Martyr and Rogers 2020). The dataset mainly consists of two 

types of features: structured and unstructured features. The data, in this case, might include a reference 

number that identifies the instances (Gopal 2018) – in this instance, the case unique number. This 

allows the features to be searched, filtered, and reorganised (Martyr and Rogers 2020). However, some 

features are labelled as accident title, description and health and safety category, cause description, 

comments, and prevention description, and are written by the reporter in free-text format (see 

Appendix). The free text data type is considered unstructured (Gopal 2018). Structured features can 

be handled differently than the free text, as the latter requires methods of data mining, NLP or 

unsupervised ML (Gopal 2018). In this thesis, the structured dataset acts as an investigative step for 

the predictability of accidents in building the information extraction on the first step of the prototype 

development and recommend prevention measures. 

Another characteristic of the dataset is the definition of input and output features. In an application 

where an event happens at a specific point in time and in prediction models, data leakage must be 

prevented (Kaufman et al. 2012). Data leakage is defined as the introduction of information about the 

target of a data mining problem, from which it should not be legitimately available to mine (Kaufman 

et al. 2012). The input features chosen in the current case are listed in Table 4. The latter were chosen 

based on whether the features contained information that could be known before an accident occurred, 

since the data was generated as an occupational accident reporting. The downside is that most of the 

data described the event's outcome, which leaves only a few input attributes. Table 5 illustrates which 

existing feature could potentially be a target output for an ML analysis. 

The data is generally nominal (which indicates that they are represented by symbols) – it can be 

represented numerically by coding the entries by a nominal encoding scheme (Han et al. 2011). 

Table 4. Input features 

 Input feature Type of entries 
1 Type of work in detail Nominal 

2 Involved substance / chemical Nominal 

3 Employment relationship Nominal 

4 Work environment Nominal 

5 Position Nominal 

6 Company name Nominal 

7 Specific physical activity level 1 Nominal 

8 Specific physical activity level 2 Nominal 

9 Shift or accident to / from work Nominal 

10 Experience in position (months) Numerical 

11 The last deviating event that preceded the injury Nominal 

12 Work Process Nominal 

13 External factor that affected the incident Nominal 

 

Table 5. Output features 

 Output feature Type of entries 
1 Actual severity Nominal 

2 External factor that affected the incident Nominal 

3 Description of injury Type Nominal 

4 Description of damaged body part, Common Nominal 

5 The last deviating event that preceded the injury Nominal 

6 Injured body part Nominal 
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7 Injury class Nominal 

8 Category of injury  Nominal 

9 Injury type level 1 Nominal 

10 Injury type level 2 Nominal 

11 Cause category Nominal 

12 Circumstances of the accident Nominal 

13 Potential Severity - Most Severe Nominal 

14 Risk area Nominal 

 

3.4.2.2. Data pre-processing 

Data pre-processing consists of several major tasks: data cleaning, data integration, data reduction, and 

data transformation (Han et al. 2011). Data cleaning is usually the first step in pre-processing the data 

and is done by handling missing values and noisy data (Han et al. 2011).  

In the current case, the most interesting output feature was the actual severity. The distribution of the 

classes of this output was unbalanced and needed further data prepossessing. It is possible to combine 

the last three levels of injury in one category (called major injury) and the first two classes in another 

(called minor injury). This combination separates the severity into two categories, while the major 

injury class starts at the point where accidents result in the absence of a worker from the construction 

site.  

                    

Figure 5. Actual severity frequency distribution 

3.4.2.3. Algorithm choice 

The goal of the first stage of the prototype is to predict the severity of construction processes. The 

following criteria influence the choice of algorithm for this first stage of the prototype (see Table 2), 

based on the purpose and the accident reports data structure: 

• Interpretability: The algorithm must be interpretable, especially since there is a second step 

involving the prevention recommendation that is going to be connected to the prediction. 

• Parameter tuning: A model that depends only on parameter tuning can be problematic because 

the model is then highly sensitive to the parameter’s values – it is preferable that the chosen 

algorithm is less sensitive to parameter tuning, but it is deemed not as a strict requirement.  
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• High dimensionality: The high dimensionality criteria are not critical since our data structure 

is not high dimensional. 

• Generalizability: Generalizability is one of the most essential features of ML algorithms, and 

there is a need for a model that generalizes well, especially for a relatively small dataset such 

as the one in this case. 

• Accuracy: The model must produce high and accurate predictions, especially since safety is 

the application domain – and therefore, accuracy is crucial. 

• Large dataset: The dataset is relatively small (fewer than 50000 instances), which is not a highly 

important criterion. 

• Linearity: It is not known whether the data is linearly separable. Therefore, there is a need to 

experiment with linear and nonlinear algorithms to test which best classifies the severity level. 

• Low dimensionality: The algorithm should perform well with low dimensional data since the 

dataset is relatively large compared to the number of input features. 

Highly interpretable algorithms are NB, SVM, DT, KNN, LR and LogR (see Table 2). However, Only 

NB, DT, RF, LR and LogR perform well with low dimensional datasets. RF and KNN have very good 

generalization abilities. KNN, RF and LogR are usually good for this criterion in terms of accuracy. 

Only the LogR is suitable for building a linear model. Based on this breakdown of the algorithms and 

their characteristics, the chosen algorithms are KNN, DT, LogR and RF. 

3.5. Researcher own role 
In line with Alvesson and Sköldberg (2017)’s suggestions, all activities in this licentiate thesis were 

exposed to a critical reflection of my own role and identity vis a vis not only collaboration partners, 

literature, interview respondents and supervisors, but also in reflecting and analysing literature, 

developing analytical insights and discussion, even when arriving at the main results. Being a middle-

class woman with a middle east background involves advantages and disadvantages. Particular 

Swedish construction industry traits are more visible for externals and can be identified comparing 

with the researcher own background. On the other hand, social group differences between university 

employees and building sector professionals would constitute more of a disadvantage, given the mutual 

stereotyping of academics and site professionals. In sum, these conditions are at a time enabling and 

constraining the research in characteristic ways. 

3.6. Ethical considerations 
There were a number of ethical considerations that shaped the research design. The use of the data by 

the licentiate team was governed by a non-disclosure agreement. The data transfer was only performed 

through secure channels managed by the data owner. The case company and respondents remain 

anonymous. Moreover, due to the sensitive nature of the data and the researchers’ use of ML for 

generating solutions that target specific individuals, the author chose not to consider any personal or 

enterprise information in the ML data analysis. 
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4. Summary of the papers 
This part presents a summary of the collection of papers included in this licentiate thesis. 

4.1. Paper I: A REVIEW OF MACHINE LEARNING FOR ANALYSING ACCIDENT REPORTS IN 

THE CONSTRUCTION INDUSTRY AND APPLICATION REQUIREMENTS (under review at 

The Journal of Information Technology in Construction (ITcon) submitted on 2022-02-10)  
Artificial intelligence (AI) and ML have become more popular in solving construction management 

problems (Pan & Zhang 2021). Applied ML reviews have shown advancements in safety management 

and knowledge extraction by examining accident records (Pan and Zhang 2021, Hon et al. 2021). 

However, the literature still lacks a comprehensive analysis of what developing and applying ML 

entails in the domain of accident reports analysis within the construction industry. It is not clear what 

the implantation of ML-based analysis in a contracting company might require. This paper aims to 

answer the research question: what are the requirements of an ML model based on accident reports 

data to be implemented in occupational safety in a contracting company? 

This paper contributes to the identification of prerequisites of ML development that arise from the 

specific conditions and the processes associated with managing H&S in a contracting company in the 

construction industry. The research question was answered by a literature review conducted using the 

concept-centric framework augmented by units of analysis (Webster and Watson 2002). It was based 

on searches related to the application of ML to the analysis of accident registries in the construction 

sector. The organization of the review was done to synthesize the literature into appropriate units of 

analysis, namely data characteristics, data pre-processing, algorithm type and training the ML model, 

testing algorithm performance, and implementation of ML analysis. Three citation indexes were 

selected: Web of Science, Elsevier, and Scopus. The review was conducted iteratively within the three 

databases and within Google Scholar by using the search terms “accident report,” “construction 

industry,” “machine learning”, and “construction occupational safety.” Nineteen articles were finally 

selected, four of which were found in all the searched databases. 

The analysis of the literature showed that multiple requirements are necessary. One of the most 

important requirements is a careful implementation strategy that considers existing safety processes 

and their relation to other in-place processes such as design and project planning. Thus, the 

implementation of ML-based models requires feasibility and implementation analysis - in a prototype 

format, for instance - and the involvement of practitioners. Another crucial requirement is ML 

performance measurement and evaluation to assess the performance metrics and accuracy threshold. 

Risk critical application such as safety and, more importantly, accident analysis imposes higher 

requirements of accuracy and trustworthiness in applied ML solutions. Accidents have been shown to 

generate imbalanced data in terms of accident types, causes and severity. The ROC was proposed as 

an ML performance metric because of the visualization benefits for comparing different combinations 

of errors. The ML classifiers that have lower error rates for a specific class can then be chosen 

(Gholizadeh et al. 2018). This proposed approach was shown to be especially beneficial in maximizing 

the prediction accuracy of minority classes in unbalanced data sets in the construction accident reports 

data (Gholizadeh et al. 2018).  

Overall, implementing ML in the construction industry, needs a standardized development method, 

notably due to the difficulty in assessing the best approaches in data pre-processing and applied 
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algorithms. However, ML algorithms that are easily interpreted were found to fit the safety context 

because they allow for understanding ML results. The word embedding in the data pre-processing 

showed a pattern and potential improvement within the domain-specific corpus. Future research should 

experiment and conclude whether domain-specific dictionaries should be used in word embeddings in 

the pre-processing stage. Finally, there is a need for theoretical frameworks for guiding the 

contextualization of causal factors. This would assist when developing safety solutions and when they 

are being deployed further from centralized computing platforms for real-time decision-making 

support. 

4.2. Paper II: A COMPARISON OF ACCIDENT CAUSATION MODELS (ACMS) AND 

MACHINE LEARNING (ML) FOR APPLIED ANALYSIS WITHIN ACCIDENT REPORTS 
ACMs are theoretical frameworks and have had an impact on accident causation analysis. However, 

ACMs were not sufficiently addressed in the literature of applied ML in accident records analysis. 

ML-based analysis has been criticised for lacking interpretable recommendations, data quality issues, 

clear implementation cases, the integration with domain knowledge (Vallmuur 2015, Bilal et al. 2016), 

and generalizability (Xu et al. 2021, Sarkar and Maiti 2020). On the other side, ACMs can be 

categorised into many types characterised by different causation logic and focus of causation 

categories. The current literature on ML applications within the domain of accident analysis does not 

integrate ACMs as theoretical frameworks into the ML model development and analysis. The authors 

of this paper also assume that analysing accident reports using ML can contribute to learning about 

ACMs as well as occupational accidents. This research investigated the question of what ACMs can 

contribute to the ML results of analysed reported accidents in the construction industry, and what can 

be learned about ACMs from the application of ML in this domain. This paper contributes to 

conceptualising ML models through the lens of ACMs. 

This paper is based on a desk study of the literature of applied ML in the analysis of construction 

accident reports and ACMs. The ML models are based on a literature review and the systemisation of 

the purpose of the ML, the included features, and the ranking of important factors. The themes are 

presented for an in-depth analysis. ACMs were selected based on crossing the models which were 

reviewed by Kjellen and Albrechtsen (2017), Fu et al. (2020) and Woolley et al. (2019). Three models 

were selected based on the types of ACMs and their common application in the construction industry. 

ML analysis of accident reports usually results in components that are predictive of accident types or 

severity levels. The comparative study illustrated that the components extracted by ML could be 

compared to the typology of the BOW-Tie model and the SCM. However, one major difference was 

found in ML components in that they lack prevention measures which are a bottom-line building block 

in ACMs and, consequently, accident prevention. However, the levels of causations were found to be 

mostly those remaining close to the workplace and human behaviour factors. At the same time, ML 

results rarely included factors that are related to the higher levels of decision making within the 

organisation. 

The lack of prevention measures or the inclusion of higher levels of causation factors is not necessarily 

a drawback of ML itself but the reporting that has repeatedly been missing the prevention measures 

suggestions. The more accident analysis considered factors further from the event, the harder it gets 

for further factors to become apparent in terms of their effect on the event. Furthermore, the mechanism 
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causing accidents seem to differ between the representation of ML and the SCM. Nevertheless, such a 

comparison remains ambiguous and need visualisation to make more conclusive comparisons. Finally, 

ML models in the reviewed literature tend to highlight severity as an outcome that needs to be 

predicted. In contrast, ACMs focus on accidents as events that occur regardless of their level of 

severity. 

The paper concluded that the ML analysis of accident reports needs to be guided by ACMs to be useful 

in real-life implementation. This combination contributes to making sense of ML-based 

recommendations of accident prevention measures. As much as a prediction of the event of an accident 

or the magnitude of the consequence might seem to be preventive, in the future, ML analysis might be 

better utilised in the modelling of risk factors. The integration with ACMs such as the BOW-Tie model 

and the SCM provides the backbone for ML-based accident analysis models to be tuned towards 

accident risks and any corresponding prevention measures. From an ML point of view, explainable 

algorithms should be used. The conclusions of this paper for approaching the ML-based accident 

analysis provides a possible recipe for better understanding causation factors and the mechanisms 

through which accidents happen. 

4.3. Paper III: LEARNING FROM ACCIDENTS: MACHINE LEARNING PROTOTYPE 

DEVELOPMENT BASED ON THE CRISP-DM BUSINESS UNDERSTANDING 
The increased interest in ML evident in the literature and the growing use of ML in accident statistical 

analysis has been shown to be valuable in analysing large volumes of data. However, it is not beneficial 

to reinvent existing methods, so in truth, no new knowledge is provided by such solutions. Moreover, 

the analysis of the literature contained in paper I have shown that there is a need to contextualise 

understandings of ML-based analysis and define clear ML tasks. This paper explored the local and 

corporate context for ML-based analysis and the ML development method known as CRISP-DM for 

conducting such studies.  

The aim of this paper is to analyse experiences and challenges in using the “business understanding” 

phase of CRISP-DM as the first step towards ML prototype development with respect to the context 

and local dynamics of a Swedish contracting company. The investigation adopted a bottom-up 

approach, where knowledge of accident registration procedures was the point of departure. 

The overall method is an interpretive approach. A concept-centric literature review was conducted 

(Webster and Watson 2002) to review the status of ML-based solutions for accidents report analyses. 

For the empirical context, five interviews were carried out: four with safety engineers and one with a 

safety strategist at a high level in a Swedish contractor company. The ML related interview questions 

and discussions were focused on gathering the safety requirements for developing a data-driven 

prototype, inspired by the business understanding framework of CRISP-DM and the recommended 

practice (RP) framework (DVN GL AS 2020). 

The business understanding phase begins with defining the client’s goal and deciding on a value 

proposition for the ML application. The interviews showed a difference in safety priorities between 

top management and operational level, especially the focus on behaviour and fatal accidents, the 

planning of safety tasks, and communication. This leads to conflict between single versus multiple-

goal orientation compared to the CRISP-DM model, which suggests that a single goal should be 

identified. In response to this obstacle, this paper suggested that at the end of the first step of the 
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business understanding phase, there is a need for an intermediary step to agree on a common objective 

before proceeding to accident report analysis.  

The second step of the business understanding phase requires a detailed analysis of the related 

resources, constraints, assumptions of the business objectives, risks of project failure, terminology, 

and cost-benefit analysis from a commercial perspective. The most important aspect of this application 

is to investigate the resources of the H&S unit and the characteristics of the data. The data incorporates 

valuable information, but the level of detail in reported accident causes is doubtable due to different 

experience levels among the personnel that do the reporting. Moreover, constraints can be found in the 

digital reporting system and the incorporation of safety planning between production’s main objectives 

of meeting schedule and budget demands.  

To sum up, following the recommendations of this business understanding phase reveals insights into 

possibilities and local constraints. However, it is not possible to cover all scenarios, especially if the 

first step of the business understanding phase was not concluded or aspects of the ethical consequences 

were very challenging to be identified through the interviews. 

The following step would ideally be defining data-driven goals. These would include the ML 

prediction output and the model’s acceptable accuracy. By the time the analysis arrived at this stage, 

this ideal had become more unattainable since the last two steps had not been completely closed. 

Moreover, the requirements of this step are highly dependent on the data condition. Thus, it is 

suggested that this step should be completed by adding an iteration as primary data analysis. This 

would then suggest realistic potentials and limitations to match the organisation’s aspirations. 

The previous analysis highlighted the application of CRISP-DM in the business understanding phase 

and the involvement of domain experts in a breakdown of daily processes and experiences. In project-

based organisations such as the case contracting company, there is a need to investigate and analyse 

the business understanding phase on different organisational levels. The different organisational levels 

and their concentration on a very different set of priorities challenges the use of CRISP-DM. Moreover, 

the analysis showed that adding two intermediary steps was necessary to meet the challenges in 

defining ethical considerations, application design and data-driven goals. 
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5. Machine learning model design and analysis 
This section describes a continuation of the thesis including the ML model design and analysis of 

accident reports. This section is organized after the summary of the papers (section 4) because the 

following analysis builds on the results of the previously described papers. 

5.1. Model design 
The following analysis encompasses a continuation of interviews based on the business understanding 

phase and a follow-up recapitulation of the proposed solutions. Seven further interviews were 

conducted by following the same main structure of the interview guide as in aper III. The conclusions 

of Paper III indicated the need to agree on a common organisational objective for the ML prototype 

design. The interviews which were conducted in paper III (section 4.3) were extended to include more 

actors from the H&S unit, including one site supervisor, four safety representatives, one safety 

manager and one site manager. The interviewees' collected ML application proposals are presented in 

Table 6.  

Furthermore, a workshop was planned to discuss how the accumulated propositions identified by 

analysing the interviews could be integrated into the preliminary prototype development. The 

workshop included a presentation of the results of paper III and Table 6 as the intermediary step -

suggested in paper III- of the business understanding phase. 

The workshop included the following actors: 

• Safety engineer from the contracting company (2) 

• Trade union organiser  

• Safety engineer contractor (1) 

• Business Development Lead – Analytics contactor (3)    

• Development leader Health and Safety contractor (3) 

• Construction Workers' Union agent  

• IT Solutions Manager contractor (3) 

• Work environment manager contractor (2) 

Table 6. Summary of interviews model propositions 

Machine learning model propositions 

To produce statistics on historical accident cases. 

To pay attention to work steps where there are many accidents 

To use Synergi more easily for safety work preparation and risk assessment 

Tools for presenting information about safety risks to production people 

Negative and positive observations to find the reasons behind workers not following the safety rules. 

No safety improvement needs. 

 

The workshop was organized in an online meeting and facilitated by the author of this thesis. The 

workshop resulted in a vote for the proposition that was considered the most value-adding for safety 

prevention, based on the ML analysis of the collected data from accident reports. Most of the workshop 
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participants thought the proposition for work steps and safety risk assessment was the most value-

adding use of ML (see Figure 6). 

 

Figure 6. Workshop vote for ML model proposition. 

The workshop then presented the preliminary data analysis of the case contractor’s accident reports 

(section 3.4.2.1) and the corresponding prototype design (Figure 7). The prototype design consists of 

the input features, and the blue arrows represent a drop-list of predefined categories. The categories 

should be identical to those that constituted the accident reports for consistency. The prototype was 

designed to predict severity that is categorized as low risk and high risk. The high-risk category 

represents a prediction of a final outcome starting from the absence of workers towards outcomes of 

further severity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. prototype design illustration. 

Type of work in detail  
Involved (d) Substance / chemical  
Employment relationship  
Work Process  
Work environment  
Position  
Company name  
Specific physical activity level 1  
Specific physical activity level 2  
Shift or accident to / from work  
Experience in position (Months)  
External factor that affected the incident  
The last deviating event that preceded the injury  

Prediction output 

Risk assessment                   Low risk                               High risk 
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5.2. Framework of understanding 
In response to the conclusions of paper II (see section 4.2), the Bow-Tie model was chosen as a 

framework of understanding for the ML model. In this section, I will categorise the selected input 

features for the ML model into the components of the Bow-Tie model (see Table 7). 

The BOW-Tie model (see Figure. 8) consists of multiple components characterising accidents. The 

model analysis starts by identifying a hazard in the organisation or the surrounding environment. I 

interpret that the input factors “Type of work in detail”, “Shift or accident to/from work”, “Experience 

in position (Months)”, Employment relationship”, “Work environment”, “Position” and “Company 

name” as representatives of the surrounding conditions of the work process. The hazard component is 

directly connected to the top event (see Figure 8), which I interpreted as the occurrence of an accident. 

The top event is at the centre of the BOW-Tie model and is caused by what the BOW-Tie model 

categorises as threats. The latter is represented by the input features “Specific physical activity level 

1”, “Specific physical activity level 2”, “Involved (d) Substance / chemical”, and “The last deviating 

event that preceded the injury”. The “External factor that affected the incident” feature was interpreted 

as an escalation factor. Moreover, the consequences are interpreted as the level of severity of the 

accident. The input factors are summarised in Table 7. 

Prevention barriers are very important components of the BOW-Tie model, and they are also reported 

in the accident reports. They are entered as free text, and the prototype design does take free-text data 

into consideration in this analysis (see section 5.1). 

 

Figure 8. BOW-Tie, Fu et al. (2020) 

Table 7. Input features categorization into the BOW-Tie framework. 

 Input feature  

1 Type of work in detail Hazards 

2 Shift or accident to / from work 

3 Experience in position (Months) 

4 Employment relationship 

5 Work environment 

6 Position 
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7 Company name 

8 Specific physical activity level 1 Threats 

9 Specific physical activity level 2 

10 Involved (d) Substance / chemical 

11 The last deviating event that preceded the injury 

12 External factor that affected the incident Escalating factor 

 

5.3. ML analysis results 
The input features represented in Table 8 were used to predict the level of accident severity in two 

different settings: the reported actual and potential severity. The actual and potential severity levels 

were reported and can be used as a prediction target. The potential severity represents the degree of 

severity of an accident that could have happened; for example, a minor accident requiring first aid 

medical attention could have resulted in a more severe injury and might have led to the worker having 

to take days off work. The ML model was performed by myself using the Pandas and Scikit-learn -

Python 3.9.7 libraries version. Since almost all input features were nominal values, the data was 

encoded with the sklearn LabelEncoder function. The output features had five classes, which I then 

processed to make only two classes for binary classification. In particular, the first two initial severity 

levels “First aid, continue to work” and “Injury that requires medical attention” were merged into one 

category of low severity, and the highest three categories “Personal injury with absence”, “Very 

serious personal injury”, and “Fatal accident” into one high severity category. The results of the 

predictions are presented in Table 9. 

The data analysis showed that the imbalanced state of the data had a considerable impact on the 

classification of severity. If we take the confusion matrix as a metric, the best prediction the DT 

algorithm can achieve is 383 true-positive cases of high severity, compared to 645 false-positive cases. 

However, if the accuracy is considered a metric, it was noted that it is not representative of how well 

the model classifies major and minor accidents. Since the interest here is to predict severity and the 

more critical one resulting in severe accident impact, accuracy alone is not enough as a metric. A good 

example here is the RF algorithm. The algorithm’s accuracy is 69.29%, while the confusion matrix 

shows that the classifier almost always assigns minor severity to the case. The results of classifying 

the potential consequences showed the models’ tendency to classify most cases as severe accidents – 

which is the most populated class in the potential severity case (see Table 9). 

The unsuccessful prediction results can be attributed to the class imbalance, but they might also be 

attributed to the features. The features might be loosely correlated to the output, which explains the 

predictions. To test the features’ predictability, I performed a random under-sampling for the high 

populated class to classify actual and potential severity. The random under-sampling reduced the 

frequency of the high severity class to match the frequency of the low severity class. This resulted in 

a slight reduction in accuracy but improved the ROC metric due to the more balanced confusion matrix. 

According to the confusion matrix metric, the predictions of the undersampled data showed slight 

improvement. This result indicates that the balanced data is not the only problem for classifying the 

target values, but also that the features are not correlated with the output. 
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The results of severity prediction illustrate that the proposed prototype design (Figure 7) can not be 

realised based on the ML model design and analysis of this thesis. 

Table 9. The results of ML algorithms classification of severity. 

Under sampling 

Actual severity 

prediction 

RF LogR KNN DT 

Accuracy % 60.02 56.57  55.01 53.94 

ROC 0.6002 56.57 0.5501 0.5394 

 

Confusion matrix [622  406] 

[416  612] 

[569  459] 

[434  594] 

[579  449] 

[476  552] 

[560  468] 

[479  549] 

Original data form 

Accuracy % 69.29 69.05 

 

 65.33 

 

60.12 

 

ROC 0.5549 0.5102 0.5324 0.5373 

 

Confusion matrix [2123  209] 

[823    205] 

[2273   59] 

[981     47] 

[1968  364] 

[801    227] 

[1637  695] 

[645    383] 

 

Under sampling 

Potential severity 

prediction 

RF LogR KNN DT 

Accuracy % 55.68 

 

51.9 51.65 

 

52.75 

ROC 0.5568 

 

0.519 0.5165 0.5275 

Confusion matrix [758 607] 

[603 762] 

 

[1086  279] 

[1034  331] 

[696 669] 

[651 714] 

[713 652] 

[638 727] 

Original data form 

Accuracy % 60.69 

 

62.26 57.08 54.26 

ROC 0.5443 

 

0.5034 

 

0.5187 0.5177 

Confusion matrix [397   968] 

[457 1803] 

 

[28 1337] 

[31 2229] 

[420   945] 

[611 1649] 

[569   796] 

[862 1398] 
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6. Results and discussion 
The overall aim of this thesis is to investigate how ML-based methods and techniques could be used 

to develop a research-based prototype for occupational accident prevention in a contracting company. 

The thesis focuses on exploring development processes that bridge ML data analysis technical part 

with the context of safety in a contracting company. The overall research question was formulated 

with the focus on accident prevention and H&S activities on-site, with the company being the case for 

the prototype development. The following four sub-questions were sequentially investigated and 

critically reflected upon to answer this research question. The following discussion around the 

theoretical framework and the data analysis is structured with these research questions in mind. 

RQ1: What are the requirements for applied ML in the domain of accident prevention in a 

contracting company’s occupational safety processes?? 

The review of current ML literature found that when analysing accident reports, a number of challenges 

originated from the characteristics of the data in terms of data format, availability, and content. 

Accident reports, which were discussed in the reviewed literature, existed in textual format and lacked 

labels. In the case of high volumes of data, the accident description content and causes were therefore 

not easily understood. On the other hand, accident reports in predefined reporting categories clearly 

illustrated the reported features. However, they often had shortcomings on the level of causation, as 

they mainly reported the factors close to the physical work environment. Only a few datasets included 

distal causal factors, such as the type of construction and project size (Choi et al. 2020) and monthly 

project-related attributes (Poh et al. 2018). The shallow description of causes in the literature studied 

is one of the most disrupting challenges because it indicates that accident reports do not possess 

sufficient detailed causation capacity to explain why accidents occur.  

Ultimately, the data characteristics determine a considerable part of the data pre-processing step. 

Accident reports are characterised by their use of language and domain-specific terminology. Although 

the literature review did not reach a definite conclusion about the application of domain-specific NLP, 

the critical literature analysis suggested that word-embedding algorithms trained with domain-specific 

corpus achieved good results in pre-processing accident reports (Zhang 2019, Zhang et al., 2020, Baker 

et al. 2020). 

Moreover, accidents happen at different frequencies – particularly severe and fatal accidents which are 

rare compared to the high frequency of reported minor injuries. The reviewed literature mostly used a 

range of data resampling methods to counteract the less frequent accidents in the reported accident 

dataset, such as Random Over Sampling (ROS), Synthetic Minority Oversampling Technique 

(SMOTE), Random Under Sampling (RUS), inversed proportional weights, and manual labelling. 

However, the reviewed literature lacked a justification for the choice of methods, and the consequences 

of using such methods were not considered. This leads to difficulty understanding ML models’ results 

for them to be applied in real-life situations. 

One of the essential recommendations arising from the ML literature review is the need for a 

systemised method for accident analysis with ML. This originated from the technical aspects of ML 

modelling and the need to integrate the theoretical and domain knowledge of safety practices. 

Considering the development context is an applied ML development general requirement and not 

exclusive for ML accident analysis. Nevertheless, it is suggested that the context around the data and 
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code systems, the data analysts, and the organisational expertise are the missing pieces of an ML 

modelling lifecycle (Garcia et al. 2018). Thus, in the construction safety domain, elements of 

digitalisation, change management, feasibility and implementation analysis depend heavily and 

necessarily on the involvement of domain experts. 

The successful application of ML in the domain of safety requires reliable evaluation methods. More 

research is needed in the area of evaluating ML prediction models. The ROC was proposed as an 

efficient metric for maximising the prediction accuracy in construction accident reports, given the 

asymmetrical frequency of serious/non-serious accidents. Nevertheless, more research is needed in 

evaluating applied ML in construction safety, including external validation and implementation trials. 

It is important to note that this literature analysis has been influenced by my thinking about the problem 

I intended to solve. I have been interested in finding the best way to conduct an ML model for analysing 

accident reports. It is not necessarily so that categorising the literature into main themes such as the 

data characteristics and the implementation of ML is original, but it has been shaped by my wish to 

find themes that could help my research. This probably explains my somewhat performative language 

use. Moreover, this observation also relies on being explicit about the fourth level in the reflective 

methodology, the researcher’s role (Alvesson & Sköldberg 2017). 

RQ2: What is the role of ACMs as a theoretical framework for the ML results of analysed reported 

accidents in the construction industry, as well as what can be learned about ACMs from ML? 

The accident causation models (ACMs) (i.e., the BOW-Tie, the SCM, and the STAMP model) were 

compared to the literature that applied ML to analyse accident reports in the construction industry. 

This comparison considered their level of causes, the relationship between causes, and the 

predictability of severity. This contributed to a re-conceptualising of ML-based models through the 

lens of ACMs. The study in paper II concluded that ML could benefit from integrating accident report 

components into the components of ACMs. The benefit is derived from conceptualising extracted 

features from free text and providing a foundation for prevention measures. Rule-based data mining 

and feature extraction methods were found to have shortcomings due to features and rules being 

prepared by a human and the weak generalisation of results (Pan and Zhang 2021). The SCM, the 

Bow-tie model, and several ACMs categorise accident causes into predefined categories. These 

provide somewhat well-defined causes levels – I say somewhat here because I have a reservation on 

how well accident causes are defined in ACMs. Nevertheless, ACMs provided a reference point that 

partly alleviates confusion of interpreting free text data used in ML-based accident analysis. I would 

say the same about accident reports in pre-populated format. These might have their implicit theory, 

and to use ACMs components to recategorise reported accident causes may clarify that. 

There is also a missed opportunity to reflect on ACMs from the perspective of ML analysis. Methods 

such as data mining (Zhong et al. 2020) and semantic roles and rules analysis of accident components 

(Kim and Chi 2019) have visualised the relationships between causal variables. Generally, this 

contributes to creating a link between accident types and accident consequences. However, further 

research is needed to understand the nature of the relationships between causal variables and 

investigate if the levels of causation contribute to accidents equally. 

A major difference was found by comparing the analysed ML literature and the SCM and the BOW-

Tie. It was found that the approach taken by ML modelling to predict the severity of accidents is 
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contradictory with accident analysis and causation models that assume the outcome of accidents as 

involving an unpredictable stochastic element (Harms-Ringdahl 2013). Although the ML literature 

claimed success in severity predictions with internal validity (i.e., ML model accuracy and not in 

applied real-life situations), their results were not always consistent and did not show proof to 

counteract the assumptions of ACMs regarding the stochasticity of accident severity. I must say I 

would like that severity could be predicted. Maybe the academics who work in the same domain wish 

for that too. This might be a reflection of the desire to protect on-site personnel from a dangerous 

situation. One should be aware of such inclinations because they could lead to the opposite, such as 

increased exposure to the danger of minor accidents if predictions introduce overweight on instances 

leading to fatalities. This observation echoes Alvesson & Sköldberg’s (2017) observations on the role 

of the researcher and the structural, societal distance between ML developers and the building site. 

RQ3: What are the experiences and challenges of applying CRISP-DM “business understanding to assure 

a solid contextual embedding and an appreciation of local dynamics? 

Based on the conducted literature review to answer RQ1, there was a recommendation to develop ML 

prototypes concerning the local context dynamics systematically. The CRISP-DM was investigated as 

a possible method. The application of this method by doing interviews, although posing relevant 

questions, was found too general to finalise a business understanding without adding multiple 

iterations. Nevertheless, the interviews revealed interesting insights into the safety processes and the 

perception of H&S personnel within the organisation. It is important to note that the description of the 

CRISP-DM method does not particularly advise doing interviews or a specific way for conducting the 

business understanding analysis. The decision to conduct interviews was my interpretation of using 

the CRSP-DM. It was somewhat challenging for me to start thinking about a prototype without 

understanding the existing safety processes and who would be using it. 

While the respondents agreed on the meaning of safety (“everyone goes home injury-free”), it seems 

that ideas about achieving that goal were not as clearly a part of safety meaning. This indicated 

describing safety as the goal to be injury-free. There was much focus on the planning and preparing 

for safety measures on-site. Accordingly, processes were in place with a particular focus on fatal 

accidents and the behaviour of individuals. Individual risky behaviour was the shared major cause 

among top management and the safety engineers. However, another major cause mentioned by safety 

engineers and site managers was thought to be related to production time pressure and referring to 

contractual arrangements as an inevitable, unchangeable condition that produces safety risks. 

There was also a prevailing assumption that effective accident prevention is achieved by systemically 

identifying the risks associated with accidents and taking measures to avoid their impact. Furthermore, 

the interviewees expressed conflicting views about risks associated with the prevailing safety 

assumptions about behaviour and the systemised risk analysis. These commonly held assumptions and 

associated risk evaluation techniques were often criticised in the literature for low inter-rater reliability, 

i.e., low degree of agreement among observers/raters/analysts in estimating frequencies and 

consequences (Harms-Ringdahl 2013). Analysts/raters tend to assume that a major consequence is 

automatically less probable (Harms-Ringdahl 2013).  

The interviews showed a need and potential added value to accident prevention activities by improved 

safety planning and more accessible risk identification. It seems as if there is frustration with 
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anticipating what would cause the next accident. It might be because some safety professionals have a 

perception that all that can be done to prevent accidents is known and well-established, but accidents 

still occur. Some of the respondents pointed to the need to know why allegedly workers do not follow 

the safety work packages. They attributed that alleged behaviour to the workers’ tendency to prefer to 

do the work before thinking about safety. So, considering workers’ behaviour as a significant cause of 

accidents makes much sense for those safety professionals who deem the rules known and sufficient. 

Ultimately, the CRISP-DM is applied to collect and understand the context requirement and identity 

the business’s expected advantage of using ML data analysis. However, the interviewees’ experiences 

and views indicated complexity in defining a goal that solves an existing problem -from their 

perspective. This presented a difficulty in deciding on an ML utilisation goal and more so to analyse 

the implications and more specific ML prototype design requirements. Paper III concluded that 

CRISP-DM might benefit from adding two iterative steps to the existing ones in its process. 

RQ4: What are the predictive attributes of accidents based on ML application to accident 

reports? 

Based on the ML data analysis in this thesis (see section 5), the pr-populated categories of accident 

description were the point of departure for the ML model design. However, in the accident reports data 

of the case contractor, only a few reported features could represent knowledge before the accident took 

place (such as “work environment”). Compared to those features registering the consequences such as 

the description of the damaged body part and description of injury type and cause category.  

In this thesis’s accident reports analysis (section 5.3), the same phenomenon of the low frequency of 

severe accidents was encountered. The ML model classified most accidents into the low severity 

category, which was the most populated class. Random undersampling (RUS) was employed to test 

the impact of the uneven severity frequency. However, it was found that the difference in frequency 

did not explain the ML model’s results since the use of RUS for the more populated class did not result 

in a considerable improvement in the classification performance.  

This result indicated that the same features’ entries that characterised the work environment for a high 

impact accident were the same for the low impact ones, according to other accident research. It is 

important to note that the prototype design and the choice of severity as an output for the ML model 

were impacted by the available features within the case accident reports and influenced by my own 

inclination to predict severity. This finding implies that research on analysing accident reports by ML 

needs new ways of thinking by approaching the analysis differently. More research is needed about 

this development phase, and only a little research can be found in response to the methodological 

limitations for handling severe accident reports data. A systemised data pre-processing approach that 

implements clustering, chi-square test and principal component analysis (PCA) has been proposed in 

earlier published studies (Lee et al. 2020). 

In this thesis, the BOW-Tie model was used to understand the consequence prediction ML analysis. It 

was found that the data organised as hazards and threats did not differentiate between which work 

conditions, physical activities and deviating events explained the level of severity in the event of 

accidents. This result is in line with basic assumptions in the BOW-tie model. This result raises two 

critical questions. One involves safety planning and what, in fact, the H&S unit knows about the 
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accidents that could be used in planning and prevention. This, in turn, relates to whether an overall 

prevention strategy is being implemented on-site.  

The second important question involves the BOW-Tie model, or in general, whether the ACMs’ 

assumption to prevent accidents by systematically analysing the risks is just an illusion. Building on 

the interviews with the staff of the H&S unit, this is probably true since general safety practices and 

accident analysis are more concerned with preventing the consequence/severity of an accident than the 

event itself. The ML analysis of accidents reports and the prediction model that was undertaken in this 

thesis supported this discussion. By using the reported potential accident consequence instead of the 

actual severity as a prediction target, there appears to be a stochastic element in accident outcomes. 

On a general note, there has been a change in the view of risk evaluation beyond probabilities and 

consequences and more towards a decision-making process that considers a broader view on the 

context of risk (Harms-Ringdahl 2013).  

Intuitively, it could be assumed that the reported potential severity might alleviate some of the 

stochasticity in accident severity. However, the experimental ML analysis in this thesis (see Table 9) 

showed otherwise. This might be explained by the reported potential severity being overestimated. 

Most of the potential accident severities were estimated to be just in the next severity level above in 

the case accident reports. Although these results do not seem encouraging, accident reports and the 

application of ML could support other purposes instead of accident impact prediction. Such purposes 

could include causation modelling and extraction of unique accident cases that might present new 

knowledge. The case accident reports contained other data types such as causes and prevention 

measures and accident descriptions in free-text format (see Appendix). This type of data was not used 

in this thesis, but it can potentially be used in independent research that considers another ML model 

design. 

Accident causation analysis of accident reports using ML provided an added value by giving means 

for efficient extraction of information. ML algorithms search for high frequency, often repeated 

patterns, and this approach is not compatible with finding new knowledge about all types of accident 

occurrences. The domain of accident prevention is mature, and much is known about accidents 

causation combined with developed ACMs that have evolved to include further levels of causes 

beyond the workplace and human behaviour. Therefore, expecting the next accident might not be 

associated with analysing frequent accidents cases but with discovering emergent risks. ACMs provide 

a stable foundation for putting emergent risks into perspective and support prevention strategies. 

However, ACMs seem to have reached a ceiling of causation levels and their representation. Thus, 

more development is needed in understanding the nature of the relationships between causes instead 

of adding further categorisations and levels of analysis. 

Finally, according to my definition of a prototype” as the one suggesting a precise implementation for 

ML-based data analytics. One that shows means of application and a digital software interface that is 

ready for use”. I can say that this thesis did not realise the aimed and designed prototype. Mainly, the 

results of the ML modelling of the case accident reports were not successful in being taken further to 

an implementation stage. 
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7. Conclusion 
This thesis contributed to the exploration and understanding of ML development processes to bridge 

ML data analysis with the context of safety in a contracting company. The thesis has provided a method 

for choosing an ML algorithm based on the required criteria of the ML model. Moreover, the thesis 

discussion argued for the use of CRISP-DM as a method for understanding the context and gathering 

potential use of ML from the business perspective. ACMs were also essential in ML model 

interpretation, especially in identifying components of accident analysis and categories of causes. 

ACMs provided a background for accident investigation and causation analysis for many years and 

developed over time. This has resulted in several classifications such as linear (e.g., SCM) and non-

linear (e.g., Bow-tie model) models according to the assumed logical sequence of events that lead to 

accidents. Other classifications also exist, but ACMs have been divided into groups based on different 

stages and causations. The simple linear models attributed accidents to physical/mechanical and human 

errors. ACMs then became associated with complex linear models as they increasingly considered the 

interaction between latent organisational factors and unsafe behaviour. Complex non-linear models 

encouraged a broader view of system-related factors in response to the growing complexity and tighter 

couplings within industrial domains. They now explain accidents as being caused by the dynamic and 

non-linear interaction among multiple factors within the entire system, including political and 

regulatory factors. 

ACMs evolved to include higher levels of causation. Moreover, ACMs assumed stochasticity in 

accident severity. Behaviour and advanced socio-technical and cultural models were used in the 

relevant domain literature in the construction research context, while the system-based models were 

hardly ever applied. Accidents continue to occur in the construction industry, and there is a need to 

investigate theories and models of accident causation against the quantitative data analysis that is now 

being derived from many registered accidents. 

The ML-based approach to accident analysis includes supervised, unsupervised and semi-supervised 

learning. Unsupervised learning is a method of data exploration or description employed when there 

are no specific preassigned labels for the input or output features. In comparison, supervised machine-

based learning depends on mapping an already labelled input to output. Semi-supervised machine-

based learning consists of a combination of the latter two approaches. Supervised ML algorithms can 

be further categorised into linear and non-linear algorithms, each having different characteristics, 

strengths and weaknesses. The algorithms were organised based on their characteristics (e.g., 

interpretability, accuracy, generalizability). 

This thesis has employed an overall qualitative-interpretive reflexive methodological approach. This 

approach combined different levels of interpretation. ACMs and ML accident analysis were chosen as 

the main theoretical frameworks for answering one overall research question and four related sub-

questions. The associated empirical research included collecting accident reports and interviews 

conducted within the H&S unit in a contracting company. The CRISP-DM and ML algorithms were 

employed to develop and analyse an applied machine learning model. ACMs, ML algorithms, and 

CRISP-DM provided the desired multiplicity in interpreting the empirical material. The practical 

research method consisted of four sequential steps, including three papers and the ML-based analysis 

of accident data. 
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ML-based accident analysis can create knowledge about accidents in a contracting company or other 

organisations, such as objects and combinations of situations that cause accidents. The literature in this 

context showed various means by which the application of ML algorithms can enhance knowledge 

about accidents. ML models can be applied in severity estimation, accident type classification, 

information extraction and safety training scenario generation. However, the literature also showed 

that extracting new knowledge about accidents in a contracting company was hindered by an array of 

challenges. Mainly the systematisation of the ML process, the feasibility of implementation, and the 

focus on severity prediction. 

The reviewed literature of applied ML in accident report analysis indicated the need for the 

standardisation of the development process regarding the feasibility of implementation and evaluation. 

However, implementing the CRISP-DM as a process did add essential components to understanding 

the context, such as context requirements, assumptions about safety processes and accident prevention. 

Although the CRISP-DM was found too general to provide specific guidelines for ML prototype 

development, it provided a backbone for the application domain. Further decisions on the ML system 

design can be established with a flexible-iterative model design process. 

ACMs served as a theoretical framework for conceptualising reported accident features and 

understanding ML-based analysis and interpretation. It was concluded that the reported features that 

described the work environment do not explain severity. Although the domain produces less severe 

accidents that are not aligned with how the machine learning classification algorithms work, this was 

not the primary problem. The primary problem lies within the direction of the ML related literature to 

predict severity, which is stochastic.  

Although ACMs have guided accident investigation and promoted successful prevention strategies, 

the promise of risk mitigation by systematically analysing accident risks has been undermined by the 

difficulties around the identification of unknown and emerging new types of risk. ACMs assume that 

the essence of prevention is by systemising risks and causes. However, in this mature field of study, 

what is needed is to understand better the rules that govern the relationships between emergent new 

risks. Accident report analysis using ML offers methods and means in this area. Data mining and 

unsupervised ML are proposed as a possible way forward to meet this ambition in that they are less 

explored in the ML models considered within the current literature. 

This study suggests that there is a need for systemised machine learning modelling methods for 

analysing accident reports. Systemised methods should consider integrating an applied ML model 

within the context of domain experts responsible for implementing prevention measures and strategies. 

Moreover, there is a need for a development method that systemises the technical part of data pre-

processing and the choice of algorithms along with the needed internal and external validation. 

Moreover, integrating a theoretical framework is essential for analysing accident reports, namely 

ACMs. The application of a theoretical framework proves to be particularly helpful in identifying 

components of accident prevention. 

From a technical perspective, several methods in accident reports analysis in the construction industry 

were recommended. Specific NLP algorithms that consider the local domain language was 

recommended over ML algorithms trained with a general corpus. Moreover, data pre-processing and 

handling methods such as clustering and Chi-square were also recommended. These were explicitly 
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suggested to justify and explain the consequences of the chosen methods. The same applies to the 

evaluation metrics, such as the ROC metric. A definitive consensus about the best use of algorithms 

was not evident in the existing literature. However, this thesis suggested a method for selecting the 

ML algorithm based on its preferences and task definition and strengths and weaknesses of the relevant 

ML algorithm.  

The ML model that is built on accident reports from the contracting company did not explain accident 

outcomes. It was found that the entries of the features that described the accidents did not differentiate 

between high severity and low severity accidents. This result indicated that ML models that mainly 

focus on accident severity prediction are less successful than they seem. Instead, this thesis advised 

that the focus should shift from accident severity level and use ML to identify emergent risks. The 

latter direction should involve close collaboration with domain experts and organisational change. 
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8. Future work 
Future work might take in consideration unsupervised-ML based analysis and data mining methods on 

the unstructured reported accidents. Such an ML based approach will be useful in discovering and 

understanding the relationships between causes. Moreover, an in-depth analysis of the ML 

development process could also be a useful direction for future research, where more case studies 

could be taken in consideration in order to explore the development of a more generalized process. 

Such a development would benefit from investigating the prevention strategies implemented on site 

because much can be learned about successful safety process. Such an empirical investigation could 

be of benefit in identifying the methods and principles of prevention measures that allow for safe 

production rather than merely focusing on accident occurrences that drive current thinking.  
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List of abbreviations 

Abbreviations Explanation  
ACMs Accident causation models 

AcciMap accident map model 

AI Artificial intelligence 

ANN Artificial neural network 

ConAC Construction Accident Causation 

CRISP-DM Cross Industry Standard Process Development Method 

DT Decision tree 

FN False negative 

FP False positive 

HSACS Human Factor Analysis and Classification System 

KNN K-nearest neighbour 

KSVM Kernelized support vector machine 

LogR Logistic regression 

LR Linear regression 

ML Machine learning 

MLP Multi-layer perceptron 

MORT The Management Oversight and Risk Tree 

NB Naïve Bayesian 

NLP Natural language processing 

OARU Occupational Accident Research Unit 

RF Random forest 

ROC Receiver operating characteristic 

ROS Random over sampling 

RUS Random under sampling 

SCM Swiss cheese model 

SMOTE Synthetic Minority Oversampling Technique 

STAMP Systems Theoretic Accident Model and Processes 

SVM Support vector machine 

SVR Support vector regression 

TN True negative 

TP True positive 
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Appendix  
Accident report dataset description. 

Where, what, who 

This section of the report consists of information about the date, time and notified authorities, 

followed by the health and safety category, and the company where the incident took place. A case 

title and description are asked for, as well as whether the accident involves in-house or subcontracted 

employees. Project information contains multiple levels of detail, indicating the project and divisions 

where the accident took place. The title of accident, its description, and the health and safety category 

are written by the reporter. The health and safety category report lists accident types such as machines 

and equipment, falling objects, walkways, access roads, lighting, etc. 

General classification 

The general classification section involves information about the detailed work process, material 

agent and the substance / chemical solution involved in the report and is listed in a pre-populated 

drop-down list. The work process concerns the general type of work, and the work process list 

concerns a more detailed process category. Both have multiple levels of detail, but despite being 

necessarily different from each other, they seem to be repeated in the data. 

Type of work in detail Reinforcement, Excavation, Concrete work, etc. 

Involved substance / chemical 

solution 

Gas, Cement, Bitumen, etc. 

 

Work Process Excavation, construction work, renovation, demolition 

New construction – house 

Etc. 

External factor that affected the 

incident 

Building and construction parts  

Facilities 

Etc. 

Consequences 

The consequences section indicates the severity of the accident, as well as details such as whether it 

resulted in personal injury, whether the worker was assigned alternative work, any financial losses, 

the units where the accident happened, and the work shift during which the accident occurred.  

Actual severity 1) First aid, continue to work 

2) Injury that requires medical attention 

3) Personal injury with absence 

4) Very serious personal injury 

5) Fatal accident 

Monetary loss  Monetary loss 

Employment relationship Part time employee, Own employee. 

Work environment Production site, factory, workshop 

Underground – mine 

Etc. 

Position Machine operator 

Supervisor 

Etc. 

Description of damaged body part, 

Common 

The leg / calf 

Torso 

Etc. 

Description of injury  

type 

Allergic reaction 

Electricity injury 

Etc. 

The last deviating event that 

preceded the injury 

Electrical problem due to defects in the installation - causes 

an indirect contact 

Fire, ignition 

Etc. 

Number of registrations Personal 

injuries 

The number of registered personal injuries. 
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Experience in position (Months) The number of months of experience.  

Actual number of days with 

Alternative work 

The actual number of days with alternative work. 

Actual number of days of absence 

(Absence damage), calendar days 

The actual number of days of absence 

Company name Main contractor 

Subcontractor 

Injured body part Finger (fingers) 

Teeth 

Etc. 

Injury class 1) First aid, continue to work 

2) Injury that requires medical attention 

3) Personal injury with absence 

4) Very serious personal injury 

5) Fatal accident 

Category of injury  Hit by moving objects, collision with – no 

Squeezing, crushing, getting stuck in, etc. Not specified. 

Etc. 

Injury type level 1 Wounds and superficial injuries 

Dislocation, sprains, and strain 

Etc. 

Injury type level 2 Superficial injury 

Dislocation and subluxations 

Etc. 

Specific physical activity level 1 Working with hand-held tools - Not spec. 

Driving / staying on board transport equipment / handling 

equipment - Not spec. 

Etc. 

Specific physical activity level 2 Working with hand-held tools – motorized 

Driving a means of transport or handling equipment - mobile 

and not motorized 

Etc. 

Shift or accident to / from work Day shift 

Evening shift 

Etc. 

Loss potential 

Possible further consequence Material damage 

Personal injury 

Potential Severity - Most Severe 1) First aid, continue to work 

2) Injury that requires medical attention 

3) Personal injury with absence 

4) Very serious personal injury 

5) Fatal accident 

Risk area Less serious area (green traffic light) 

Serious area (yellow traffic light) 

Critical area (red traffic light) 

Causes 

Comments Potential comments offered for a case. 

Circumstances of the accident During travel between the home and the workplace 

At work: During work 

At the workplace but not in work tasks: Other premises than 

those arranged by the employer 

Etc. 

Cause level 1 Inadequate risk assessment and / or risk assessment not 

carried out 
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Removal of safety devices 

Etc. 

Cause level 2 Unconcentrated / distracted 

Insufficient safety assessment 

Etc. 

Causes - Cause description Free text 

Cause category Prerequisites (Direct cause) 

Person-dependent factors (underlying cause) 

Etc. 

Prevention 

Expiration Status of Action Ended after due date 

Completed before due date 

No deadline 

Comments Free text  

Prevention status Prevented 

Rejected 

Prevention type Temporary 

Prevention 

Action - Created Date, Time Period 

= Day 

Date format 

Action - Fixed, Time period = Day Date format 

Action description Free text 

Case handling 

Case Management Time Number of days 

Registration delay (Established date 

- Case date) 

Number of days 

Case management and status All cases in the data set are closed 
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SUMMARY: Recently, there has been a significant growth in the number of publications on applied 

machine learning (ML) in safety analysis within the construction industry. The increased application of 

ML-based analysis covers both workplace related risks and underlying accident patterns. However, ML 

based approaches to these concerns have been criticized for a lack of clarity around the description of 

methodologies, interpretation, and the context of the application. The construction industry tends to be 

complex with its project-based organization and the different collaborating disciplines. Therefore, this 

work aims to find the development requirements for a ML based model which can be applied in the area 

of occupational safety. A review of the published literature on applying ML based analysis to construction 

accident reports was carried out. The review included 19 selected articles from three main libraries: 

Web of Science, Elsevier, and Scopus. The analysis of the purposes for using ML based models, the ML 

methods, and the performance of ML based algorithms in the reviewed literature highlighted a need for 

a more thorough ML task definition. Moreover, differences in frequencies of accident severity and 

accident types make it difficult to articulate data pre-processing requirements and the criteria for the 

selection of ML algorithms. The use of ML based analysis in the construction industry, would benefit 

from incorporating a standardized development method. And interpretable ML algorithms are better 

suited to interpret safety recommendations. Moreover, future research should experiment and conclude 

whether domain specific dictionaries should be used in word embeddings in the pre-processing stage. 

Testing the performance of the ML models and implementation in the industry would require stakeholders 

to be more involved in setting up an accepted prediction accuracy threshold. 

KEYWORDS: accident report; construction; implementation; machine learning; safety. 

INTRODUCTION 

The construction sector is well-known for being both risky and having a high frequency of occupational 

accidents (Hoła and Szóstak, 2015). Recently, there has been a notable increase in the literature on 

applying ML based analysis in the construction industry (Xu et al., 2021), including in the domain of 

safety (Hou et al., 2021). The accumulated accident reports in contracting companies and national 

registries are loaded with accident-related data, such as circumstances, processes, and the people 

involved. Moreover, the increased focus within the literature on ML based analysis has therefore also 

indicated risk assessment-related applications of ML that included learning from textual data in the 

context of accidents, identifying contributing factors, and the extraction of accident-related information 

(Hegde and Rokseth, 2020). 

ML has increasingly been sought in finding underlying patterns within accident reports that has the 

potential to increase the predictability of risk at work, especially with large volumes of accident-related 

data that is available (Bilal et al., 2016, Hegde and Rokseth 2020, Vallmuur 2015). Regardless, the current 

literature had been criticized for analysing textual injury records while lacking sufficient descriptions of 

the methodologies used in processing the data and training the ML models. This has made it harder to 

understand the potential impact of ML applications on safety processes (Vallmuur, 2015). Moreover, 



 

 

Bilal and Oyedele (2020) have suggested that the application of ML surpasses the development of a 

prototype. And that reliable ML models need to be developed in collaboration with the practitioners of 

the industry rather than just the ML expertise and intuition of data analysts that currently informs the 

design of ML models. Therefore, the development of ML learning prototypes requires understanding the 

context of application and interpretability (i.e., the ability to understandably explain predictions 

emanating from a ML model to a human) (Gilpin et al., 2018). As a domain of ML application, the 

construction industry is relatively complex by being mainly project-based and involving the collaboration 

between many disciplines. Added to which the management of safety is only one process among many 

other on-site production related processes (Milch and Laumann, 2016). Moreover, the current literature 

reviews include the application of ML in the construction industry and safety (Hegde and Rokseth 2020, 

Hou et al., 2021, Xu et al., 2021) and there is a need for more focused review on ML based analysis of 

accident reports. These sector specific complexities and the need for a narrow scope review lead to the 

research question: what are the requirements of a ML based analytical model using accident report data 

if it is to be implemented a representative contracting company?  

This article aims to investigate the possible requirements for the development of a ML model that might 

be implemented in order to analyse occupational accidents data within the construction industry. Such an 

investigation would contribute to the identification of prerequisites of ML development that arise from 

the specific conditions and the processes associated with managing health and safety in a contracting 

company in the construction industry.  

A literature review was carried out to answer the research question. The literature review focuses on the 

applications to accident reports regarding its use of algorithms, methods, data processing, and purpose 

and scope.  

It should be noted that this literature review is part of a Licentiate thesis project that aims to apply ML 

based analysis to an archive of registered accidents from a large contracting company in Sweden. The 

reviewed articles are therefore arranged into the following themes: data characteristics, data pre-

processing, algorithms and model training, algorithms and performance testing, model usage. 

METHOD 

The literature review was conducted using the concept-centric framework augmented by units of analysis 

(Webster and Watson 2002) and it was based on searches related to the application of ML to the analysis 

of accident registries in the construction sector. The subsequent review followed the concept centric 

review structure suggested by Webster and Watson (2002). Each article was organized by the identified 

concepts (see Table 1). The organization of the review was done to synthesize the literature into 

appropriate units of analysis; namely data characteristics, data pre-processing, algorithm type and training 

the ML model, testing algorithm performance, and implementation of ML analysis.  

Three citation indexes were selected, namely Web of Science, Elsevier, and Scopus. The review was 

conducted iteratively within the three databases and within Google Scholar by using the search terms 

mentioned above. The relevant literature emerged from using the search terms “accident report,” 

“construction industry,” “machine learning” and “construction occupational safety.” The literature search 

was thus targeted whilst still being sufficiently comprehensive (MacLure 2005). 

The selection of the literature was done based on Dundar and Fleeman’s (2017) exclusion and inclusion 

criteria steps. The included articles were ones that exclusively have the following criteria: 

• Data source: Accident reports. 

• Domain: Construction industry. 

• Data analysis: Machine learning. 

The selection of papers using these criteria yielded a narrowly-targeted list that is only related to the use 

of ML on reported accidents’ data in the construction industry. Any returned results in non-targeted 

contexts, e.g., the ones of chemical plants, steel plants, and car crashes were excluded. Articles analysing 

data from accident news, or the web-crawling technique were also deemed out of scope. One hundred 

thirty publications from Google scholar were also abstract scanned (70 within 2018-2019, 60 within 2020, 

and 60 within 2021). After scanning the abstracts against the inclusion criteria, the initial selection of full 

papers included 13 articles from Web of Science, 12 from Elsevier and 2 from Scopus. 



 

 

The collected articles were compared across the four databases to identify the shared articles. Nineteen 

articles were finally selected, four of which were found in all the searched databases. The main reason 

for selecting these 19 papers was that they included in-depth studies within a cross-section of the concepts 

mentioned above, rather than the accumulation of references that might be peripheral. This work is also 

a preliminary part of a project aiming at applying ML based analysis to a dataset of registered accidents 

compiled by a large contracting company in Sweden. This impacts the review of literature by highlighting 

the implementational requirements that in turn guide the data analysis process within the larger research 

project. 

The iterations of the literature review and the emergence of the themes mentioned above followed the 

abductive reasoning of qualitative research. Typically, observations and explanations of phenomena are 

developed by working iteratively between theory and data (which, in the present case, is the content of 

the references accumulated with each iteration). This facilitates the revision and refinement of earlier 

conceptions (Bell et al., 2019). 

LITERATURE REVIEW 

Data characteristics 

The following section presents the data source, format and structure, and content. This section lists the 

latter characteristics to make the connection with the following subsections about how the data was pre-

processed, analysed, and utilized. The organization of the references in this section was based on common 

characteristics that have been used to define the data. 

In Table 1, the reviewed references were organized in terms of the data source, the origin country, its 

type and balancing methods, the used accuracy metric and the respective achieved values, and the purpose 

for which the data were used. 

Table 1. Literature review content in terms of data characteristics 

Reference Data source Count

ry 

Data type Data 

balancing 

Algorith

ms 

Accuracy 

metric 

Accuracy 

value 

Purpose 

Choi et 

al., (2020) 

Ministry of 

Employment and 

Labour 

Korea Accident 

reports/137323 

injuries and 

2846 deaths 

ROS AdaBoos

t, LR, RF 

AUROC RF 0.9198 predict the 

fatality 

likelihood 

Zhu et al., 

2021 

Ministry of 

Emergency 

Management and 

the Work Safety 

Administrations 

China 571 

investigation 

reports 

SMOTE LR, DT, 

RF SVM, 

NB, 

KNN, 

MLP, 

AutoML 

Precision/re

call/ F1-

score 

AutoML 0.844 Predict 

severity of 

accident 

Zhang et 

al., 2020 

OSHA USA 18xx 

Accident 

reports 

Manual 

labelling 

BiLSTM, 

SVM, 

NB, and 

LR, 

CNN, 

LSTM 

Weighted 

average F1 

C-BiLSTM 

(BERT) 0.81 

Classify 

accident 

categories 

Zhang 

(2019) 

OSHA USA 1280 Manual 

labelling 

KNN, 

NB, DT, 

LR, 

SVM, 

BiLSTM 

Weighted 

average F1 

BiLSTM  

0,723 

Classify 

accident 

categories 

Kim and 

Chi 

(2019) 

KOSHA, 

KISTEC 

Korea 4,263 accident 

report 

- CRF Weighted 

average F1 

0.8 Information 

retrieval 

Kang and 

Ryu, 

(2019)  

 

KOSHA Korea 6374 accident 

investigation 

RUS RF ROC/ 

Weighted 

average F1 

Weighted 

average F1  

0.7  

Predicting 

accident 

types 



 

 

Cheng et 

al., (2020) 

OSHA USA 1000 accident 

reports 

- SGRU, 

NLP 

KNN, 

LSTM, 

DT, 

GRU, 

SVM, 

LR, NB 

Weighted 

average F1 

SGRU 

0.69 

Causes 

classificatio

n 

Fang et 

al., (2020) 

Wuhan Metro 

Safety 

Management 

System 

China 3280 near miss 

report 

- BERT, 

Fast 

Text, 

TextCNN 

+ 

BiGRU, 

TextCNN

, BiGRU 

+ 

Attention

, 

TextRCN

N 

Accuracy 86,9% Classificati

on near 

miss type 

Mo et al., 

(2018) 

National Institute 

for Occupational 

Safety 

and Health 

(NIOSH) 

USA 246 Fatal 

Accident report 

- K-means - - Clustering 

properties 

of accident 

related 

variables 

Shrestha 

et al., 

(2020)  

 

OSHA USA 1200 accident 

reports  

 

- SVM F1 score Injury Severity 

0,85 

Classificati

on of 

upstream 

precursors, 

energy 

source, 

accident 

type, injury 

severity 

Zhong et 

al., (2020) 

OSHA USA 2000 accident 

reports 

- CNN, 

SVM, 

NB, 

KNN, 

LDA 

Weighted 

average F1 

CNN 

0,63 

classify 

accident 

causes/ 

correlations 

between 

causal 

variables 

Baker et 

al., 

(2020a) 

Oil and gas 

company 

Interna

tional 

90000 accident 

reports 

Inversed 

proportional 

weights  

RF, 

XGBoost

, Linear 

SVM  

Mean F1 

score 

SVM, severity 

classification  

59.02 

Classificati

on of 

accident 

severity, 

incident 

type, injury 

type, body 

part 

Baker et 

al., 

(2020b) 

Oil and gas 

company 

Interna

tional 

90000 accident 

reports 

Inversed 

proportional 

weights 

Hierarchi

cal 

Attention 

Network 

(HAN), 

CNN, 

Term 

Frequenc

y - 

Inverse 

Documen

t 

Frequenc

y 

Mean F1 

score 

HAN (Body 

part) 

86. 97 

Classificati

on of 

accident 

severity, 

incident 

type, injury 

type, body 

part 



 

 

represent

ation 

(TF-IDF) 

+ (SVM) 

Poh et al., 

(2018) 

contracting 

company 

Singap

ore 

785 safety 

inspection 

records, 418 

accident cases, 

monthly project 

attributes 

SMOTE SVM, 

LR, RF, 

DT, 

KNN 

Accuracy RF 0.78 accident 

severity 

classificatio

n 

(Ayhan 

and 

Tokdemir 

2019). 

construction 

companies 

Turkey 87 construction 

site/ 17,285 

incidents 

records 

- ANNS, 

multiple 

regressio

n 

MAPE 70%  

 

Predict 

severity 

Zhang et 

al., 2019 

OSHA USA 1000 accident 

reports 

- Optimize

d 

Ensemble

, 

Ensemble

, 

LR, 

SVM, 

NB, 

KNN, 

DT 

Weighted 

average F1 

Optimized 

Ensemble 

0.68 

Classificati

on of 

accident 

causes 

Xu et al., 

2021b 

National and 

local websites 

China 158 accident 

reports 

- LTP - - Safety risk 

knowledge 

extraction 

Ma et al., 

2021 

OSHA USA 150 accident 

reports 

- CNN, 

SVM, 

NB, 

KNN, 

Apriori 

algorithm 

T 

F1 score 0.67-0.87 Safety risk 

assessment 

Tang et 

al., 2021 

Ministry of 

Housing and 

Urban-Rural 

Development 

China 157 accident 

reports 

- Apriori 

algorithm 

T 

- - Safety risk 

knowledge 

extraction 

The source of the data differs, either being single companies or national databases. Accident reports also 

differ in their format – e.g., free text or a template. The reviewed literature was organized in this section 

to group the references in common data sources to allow the comparison of how different bodies analysed 

the same data. The data was either collected from national sources, such as the Occupational Safety and 

Health Administration OSHA in the USA (Zhang et al., 2019, Zhang 2019, Zhang et al., 2020, Zhang 

2019, Cheng et al., 2020, Zhong et al., 2020, Shrestha et al., 2020, Fang et al., 2020), accident reports 

from KOSHA (Korea Occupational Safety and Health Agency) (Kang and Ryu, 2019) and KISTEC 

(Korea Infrastructure Safety Technology Corporation) (Kim and Chi, 2019), the Ministry of Employment 

and Labor in the Republic of Korea (Choi et al., 2020) and accident investigations from the national 

safety administration in China (Zhu et al., 2021).   

The means of collection also differed. Xu et al., (2021b) collected the data from national and local safety 

administration websites but only focused on the subway construction projects. Ayhan and Tokdemir 

(2019) collected data from multiple construction companies. Other collected accident reports were 



 

 

sourced by single companies, such as data collected from multiple construction sites involved in railway 

construction (Fang et al., 2020). Poh et al., (2018) collected data covering 27 construction projects from 

a single contracting company in Singapore (consisting of nineteen building projects and eight 

infrastructure projects). Data was also acquired from an international oil and gas company operating 

globally (Baker et al., 2020a, Baker et al., 2020b).  

Aside from differences in its origins, the collected accident reports can also be categorized by the 

structure or the format of the reports. The collected occupational accident reports which included data in 

the form of textual reports which were not labelled (i.e., the instances were not initially attributed into 

the sets of specific classes) (Kim and Chi 2019, Zhang et al., 2019, Zhang 2019, Zhang et al., 2020, 

Cheng et al., 2020, Shrestha et al., 2020, Baker et al., 2020a, Baker et al., 2020b, Xu et al., 2021b, Ma 

et al., 2021, and Tang et al., 2021). The format of this type of data is mostly a continuous passage of text. 

Other efforts manually labelled free text reports such as labelling 2000 accident reports based on the 

Workplace Safety and Health Institute (Zhong et al., 2020). Mo et al., (2018) used 246 fatal accidents 

reports which were later coded into 13 different variables, such as location, weekday, occupation project 

type, task, error origin, and causes. 

Alternatively, the accident report data was labelled by other researchers who organized the reports by 

sub-systems, factors, and attributes – such as organization and behaviour, technical management, contract 

management, and safety training. The contract management subsystem included factors such as the 

contract agreement and tight schedule, while the safety training subsystem included factors like safety 

culture, training, and examination (Zhu et al., 2021). Unlike the data in other relevant studies (injury 

reports), Fang et al., (2020) used near-misses reports, which consisted of 3280 reports and were 

categorized into 170 labels. 

The other data flow consisted of structured or pre-categorized accident reports. This type showed better 

clarity in terms of held information. The organization of reports into certain features showed the reported 

relevant information about the accident. While reported accident in free text format require features to be 

extracted or assigned to each accident report. For example, information about the age, sex, length of 

service for each injured worker, the type of construction, employer scale, and the accident data were 

registered in a dataset consisting of 137323 injuries and 2846 deaths (Choi et al., 2020). Kang and Ryu 

(2019) included 55 input variables, such as age, occupational injury, work contents, unsafe states, unsafe 

behaviours, and accident type as an output variable. Also, safety monthly inspection records, accident 

cases, and their corresponding monthly project-related attributes were used (Poh et al., 2018).  

Another approach was to collect data through a structured template (Ayhan and Tokdemir 2019); the 

templates consisted of six categories for accident causes: human factors, workplace factors, the course of 

an accident, and time of occurrence. 

To sum up, the collected data can be different in its structure (i.e., labelled or unlabelled), the type of 

injury (fatality, near-misses, accidents), sources (single or multiple companies, national registries).  

In terms of data volume, less data than what was available in national sources in most cases as manual 

labelling is challenging and time-consuming – but there were cases where the data was, indeed, manually 

labelled (Zhang 2019, Zhong et al., 2020).  

It will be seen that the use of pre-structured data provided for clearer definitions of the input features at 

the early stages of the development of the ML models, which in turn leads to a better understanding of 

the features that guide the accident analysis. 

Data pre-processing 

Many of the reviewed studies highlighted an essential step in the development, training, and utilization 

of the ML constructs, the pre-processing of data – i.e., trying to formulate and represent the data in a way 

that better fits the modelling and algorithmic structure of the ML system (Shehab et al., 2021). Data pre-

processing can be therefore considered an important step when analysing data for its subsequent use in 

ML based analysis. It can help in terms of improving the time taken for the analysis, the utilization of 

resources, storage, efficiency, and even the output gained information (Shehab et al., 2021). 

As such, challenges related to data characteristics (mentioned in the previous subsection) also tie with 

challenges in handling and pre-processing the data. Two main themes were found in the reviewed 

literature; the methods of textual data pre-processing and an element related to the difference in frequency 



 

 

of accident severity. In particular, the first theme considered the dominant pre-processing steps in textual 

data processing, including stop word removal, tokenization, and word embedding. However, the authors 

differ in using dictionaries and natural language processing (NLP) algorithms. 

Word embedding uses different types of algorithms such as Word2Vec (Zhang 2019), Wikipedia Global 

Vector for Word Representation (GloVe) (Cheng et al., (2020) and BERT (Zhang et al., 2020). These 

types of word embedding algorithms are usually trained using generic corpus but can also be retained 

with domain-specific corpus (Zhang 2019, Zhang et al., 2020). Other domain and language related 

dictionaries were used in the tokenization process Korean accident reports (Kim and Chi 2019) and 

lexical and syntactic data analysis using Chinese Language technology platform (LTP) (Xu et al., 2021b). 

Compared to the NLP toolkit, the LTP integrates the functions of text parsing and graph based syntactic 

dependencies (Xu et al., 2021b). Zhang et al., (2020) used BERT as a text pre-training algorithm instead 

of Word2vec algorithm for being more efficient in handling text multi-meaning. BERT as a method 

addresses the problems associated with word sequencing and multiple meanings. The method developed 

by Kim and chi (2019) consisted of developing a construction accident thesaurus in order to capture 

words and their synonyms or the unique representation words that are usually used in a construction-

related context. In addition to that, the Word2vec algorithm was used to estimate the meaning of words 

in different contexts and find semantic relationships (Kim and chi 2019).  

Alternatively, Baker et al., (2020b) used parts of the data that were not used to train the ML model to 

pre-train the word embedding algorithm, which provides an advantage to use a word embedding that used 

domain-related vocabulary. Cheng et al., (2020) performed the word embedding with a Wikipedia Global 

Vector for Word Representation (GloVe) algorithm. GloVe is an unsupervised ML step quantizing words 

into vectors (pre-trained databases in the GloVe website that is open for the public, such as the Wikipedia 

database, consist of 6.109 words and 100 dimensions).  

The word embedding also exist in different modes such as the continuous bag of words (CBOW) and the 

skip-gram model. By testing both modes, the authors deemed the skip-gram model more suitable for 

accident report narratives because the latter may contain sparse text features (Zhong et al., 2020). The 

data pre-processing might also include text feature extraction (Fang et al., 2020, Ma et al., 20201, Tang 

et sl. 2021), or manually labelling the accident reports (Zhong et al., 2020). The extraction of safety 

factors by the identifying the key words by using term frequency–inverse document frequency TF-IDF 

(Ma et al., 20201) and manually assigning attributes to the identified risk factors (i.e., location, work 

type, accident causes, and results) (Ma et al., 20201, Tang et sl. 2021). Feature extraction from textual 

reports was done by a ready NLP algorithm specially developed for industrial, infrastructure, and mining 

domains (Baker et al., 2020a).  

The second theme related to data pre-processing within the reviewed literature was found in the data. 

This featured classes with a considerable variation in the number of instances they include, most notably 

fatal accidents as opposed to other groups of accidents (so-called "unbalanced" classes). Such variation 

imposes a particular challenge in ML based analysis because the model's training tends to misclassify the 

sparsely populated class simply because it is harder to recognize than the more populated class. Frequency 

variation in the data has been found in classes including injury severity, energy type involved, causes, 

accident types, and body parts injured, which all affected the classification accuracy performance as 

described in section 3.4. 

There had been multiple methods for managing the class imbalance for the ML model training step (see 

Table 1). One is to merge the serious and very serious accidents in one category and then apply SMOTE 

(Synthetic Minority Oversampling Technique) to the severity and all available factors in the data (Zhu et 

al., 2021, Poh et al., 2018). Zhu et al., (2021) argued that SMOTE is better than random oversampling 

(ROS) as it adds artificially synthesized samples and does not risk overfitting. Another approach was to 

manually label additional reports of the less frequent class for obtaining a more balanced sample (Zhang 

et al., 2020, Zhang 2019). There is a need for clarity in additional labelling decisions as is not justified 

why these proportional additional cases were used or when classification categories frequencies are 

enough for a data set to be considered balanced. 

Other suggested methods were random oversampling (ROS), random under-sampling (RUS), and 

SMOTE. ROS was chosen as the best method because it better fit with the categorical values in the dataset 

(Choi et al., 2020). Kang and Ryu (2019) used RUS, which is a method that reduces the major classes, 

which resulted in a reduction of the data sample from 9795 to 6374 accident reports. Finally, class 



 

 

imbalance can be handled by assigning weights to the minority classes in the training set (Baker et al., 

2020a, Baker et al., 2020b). Few authors did not apply any resampling techniques (Fang et al., 2020, 

Cheng et al., 2020, Shrestha et al., 2020, Zhong et al., 2020). However, Cheng et al., (2020) argue that 

balancing techniques are possible improvements to explore rebalancing together with Recurrent neural 

network algorithms (RNN). 

Half of the reviewed articles used a type of data balancing method, which was almost equally distributed 

within the literature (ROS, SMOTE, RUS, Inversed proportional weights, and manual labelling). There 

are brief justifications for the choice of methods, but further exploration of the consequences of the 

method selection is needed. Moreover, word embedding algorithms (BERT, Word2vec, and GloVe, LTP) 

and word embedding pre-training with domain-related data (Baker et al., 2020b) stand out as variations 

of the chosen methods. Extracting features that characterize the accident case and the risk factors from 

continuous text had been highlighted in the literature, which is mostly a manual process that needs the 

understanding of accidents and bounded by how accidents are described.    

Algorithm type and training the ML model 

The analysis of accident reports is mainly treated as a classification task in the reviewed literature – i.e., 

classification of accident type, severity, and causes. Given this observation, the literature can be classified 

based on the type of analytical algorithms used, namely deep learning, supervised, unsupervised, and data 

mining algorithms. 

Deep learning was represented by using different variations of deep neural networks, including the 

convolutional bidirectional long short-term memory (C-BiLSTM) (Zhang et al., 2020, Zhang 2019), 

Symbiotic Gated Recurrent Unit (SGRU) (Cheng et al., 2020), Bidirectional Transformers of Language 

understanding (BERT) (Fang et al., 2020), feed-forward CNN (Baker et al., 2020b) and artificial neural 

networks (ANNs) (Ayhan and Tokdemir, 2019). The choice BiLSTM of was based on the superior 

performance in extracting information from the text and for examining information before and after the 

word and thus better understanding the context of the text (Zhang et al., 2020). The SGRU is a variant of 

long short-term memory LSTM but more computationally-efficient and combined with an optimization 

algorithm for parameter optimization of the neural network (Cheng et al., 2020). The BERT algorithm 

used for better text classification and generalization than RNN and CNN and the unique attention 

mechanism, allowing for a single representation related to different text positions within the algorithm 

structure (Fang et al., 2020). Baker et al., (2020b) experimented with different algorithms, including 

feed-forward CNN, Hierarchical Attention Network (HAN), and Term Frequency - Inverse Document 

Frequency representation (TF-IDF) +Support Vector Machine (SVM). The HAN was explained as a 

state-of-the-art algorithm with two steps of self-attention mechanisms in which the most important words 

in a sentence are identified and then the most important sentences Baker et al., (2020b). 

A significant proportion of the reviewed literature revealed a preference for experimenting with multiple 

supervised ML algorithms to find the algorithm that provides the best accurate output for classifications 

or predictions. The most used algorithms are random forest (RF) (Poh et al., 2018, Kang and Ryu 2019, 

Baker et al., 2020a, Choi et al., 2020) and support vector machine (SVM) (Poh et al., 2018, Zhang et al., 

2019, Baker et al., 2020a, Shrestha et al., 2020, Zhu et al., 2021). The SVM, XGBoost, and RF were 

used as state-of-the-art algorithms (Baker et al., 2020a). While linear (such as logistic regression (LR) 

and AdaBoost) or nonlinear (such as and RF) algorithms were considered interpretable or show feature 

importance (Choi et al., 2020). The conditional random fields (CRFs) algorithm was used for the 

effectiveness in labelling information from textual data and considering the sequence of a sentence (Kim 

and Chi, 2019).  

Unsupervised ML algorithms were used to group accident reports by applying the K-means clustering 

algorithm (Mo et al., 2018). The algorithm application was paired with the theoretical framework of 

sociotechnical systems and game design elements. The Latent Dirichlet Allocation (LDA) as a topic 

mining and corresponding word occurrence method and was combined with CNN for processing 

unlabelled data (Zhong et al., 2020). Apriori rule association algorithm was used to mine safety risk 

factors (Ma et al., 2021) and accident-related attributes (Tang et al., 2021). The Apriori algorithm was 

deemed suitable for providing safety recommendations based on the association rule properties (Tang et 

al., 2021). 

In summary, multiple algorithms were used to analyse accident reports which indicates that there is not 

universal agreement on the most suitable algorithms for accident analysis in construction. The choice of 



 

 

algorithm depends on the type of the data and the problem the ML model is expected to solve. Although 

there is no common criteria with which to determine the best choice of algorithm, it is worth noting that 

deep learning algorithms especially CNN and variations of LSTM were prominent and used in almost 

half of the reviewed studies. The second most used algorithm is the RF followed by SVM and finally 

data mining. 

Testing algorithm performance 

The generalization capability of a ML algorithm is usually evaluated using an unseen split of data (Riccio 

et al., 2020). This split is referred to as the test split and is not used during model training or 

hyperparameter tuning and validation (Riccio et al., 2020). The testing of a classification algorithm is 

used to evaluate how well the algorithm classifies the target after the training step and distinguishes which 

of the compared algorithms performs better against each other for performing the same task. In this 

section, algorithms performance is presented with the ML model purpose or the problem that it was 

designed to solve. 

The measurements are variant for testing evaluations. The most frequently used is the weighted average 

F1 score (Kang and Ryu 2019, Kim and Chi 2019, Zhang et al., 2019, Zhang 2019, Zhang et al., 2020, 

Cheng et al., 2020, Shrestha et al., 2020, Zhong et al., 2020, Zhu et al., 2021, Ma et al., 2021); mean F1 

score (Baker et al., 2020a, Baker et al., 2020b); accuracy (Poh et al., 2018, Fang et al., 2020); Mean 

Absolute Average Percentage Errors (MAPE) (Ayhan and Tokdemir 2019); Area Under the Receiver 

Operating Characteristic Curve (AUROC) (Choi et al., 2020, Kang and Ryu 2019), precision (Xu et al., 

20201b). 

Almost always, the advanced deep learning algorithms outperformed other supervised ML algorithms 

(ex. SVM, NB, LR, KNN, DT) and simple deep learning ones (LSTM, GRU, CNN) (Zhang 2019, Cheng 

et al., 2020, Zhang et al., 2020, Zhong et al., 2020). The weighted average F1 score is a better 

performance metric than a single F1 score, primarily when the data is characterized by class imbalance 

(Zhang et al., 2020). It is worth mentioning that the experiment depended on the parameter tuning of the 

word embedding step using unigrams, bigrams of two different dimensionalities, and the results showed 

that bigrams are constantly superior (Zhang, 2019). Moreover, testing BERT compared to other deep 

learning text classification algorithms for near-misses classification had the advantage of a pre-trained 

bi-directional network with an altered architecture and achieved 86.9% accuracy (Fang et al., 2020). 

For the same data set as Baker et al’s. (2020a), HAN for body part classification had the best performance 

metric of 86.97 mean F1 score (Baker et al., 2020b). Moreover, CNN was used and tested against other 

algorithms (see table 1) and combined with the Apriori algorithm as part of an integrated analysis 

framework to identify project safety risk factors (Ma et al., 2021). With ANNs, 70% of the data was 

predicted with zero error. However, although the fatalities were predicted with 100% accuracy, the testing 

dropped by 50% in testing the algorithms (Ayhan and Tokdemir 2019). 

NLP was applied to extract the causes of accidents and the objects which contributed to the accidents 

(Zhang et al., 2019). Multiple classification algorithms were tested, and the best was an ensemble one 

with an average F1 score of 68%. This performance was considered low (Zhang et al., 2019), and the 

authors attributed that to natural language not being precise and to the difficulty of developing 

comprehensive rules to cover all meanings of different expressions (Zhang et al., 2019, Xu et al., 

20201b). The CRF algorithm was used to classify accident reports and extract information from the 

reports with an average F1 score 0.8 (Kim and Chi, 2019).  

The RF outperformed other classification algorithms, such as, indicatively, SVM, KNN, and AdaBoost 

(Poh et al., 2018, Choi et al., 2020). The classification by Poh et al., (2018) into “No accident,” “Minor 

accident” and “Major accident” achieved an accuracy of 78%, while in Choi et al., (2020), the value of 

the Area Under the Receiver Operating Characteristic Curve (AUROCC) metric was 0.9198; this was 

considered as satisfactory, as the ideal value of AUROCC is 1. The RF algorithm was used and evaluated 

both with averaged F1 score and receiver operating characteristic (ROC) curve (Kang and Ryu 2019). 

On the other hand, compared with RF and XGboost, and among the different classification targets, the 

best performance was obtained in classifying the injury severity with the SVM (mean F1 score 59.02) 

(Baker et al., 2020a). SVM was applied as a single algorithm to classify injury severity with a 0,85 F1 

score (Shrestha et al., 2020).  



 

 

 Zhu et al., (2021) evaluated both the original and the adapted SMOTE data sets (see data pre-processing 

section) for comparing the evaluation metrics in accident severity prediction. The results showed that 

SMOTE demonstrated a slight improvement in the testing, but the authors found the SMOTE method 

prone to overfitting (Zhu et al., 2021). The best F1-score was achieved by the AutoML, followed by LR 

and NB. The suitability of LR and NB explained this algorithm’s performance in a binary classification 

(small and large accidents) (Zhu et al., 2021). 

An observed pattern in the reviewed literature relates to the misclassification of the less populated classes. 

Although the averaged F1 scores might indicate acceptable performances for the tested algorithms, the 

low F1 scores of the single classes are as important. The misclassification of minority classes of accident 

severity, accident type, and accident causes was a challenge for few of the reviewed literature. For a 

single cause classification (collapse of an object), the model did not perform as well (66% F1 score) 

(Zhang et al., 2020). These instances were found to have unique occurrences and characteristics and were 

manually sorted (Zhu et al., 2021). 

The classification of accident categories of “caught in between objects” and “collapse of an object” had 

the lowest accuracy. The authors explain this because the “caught in between objects” was a relatively 

minor category than the other labels (Zhang, 2019). The CNN algorithm confused falling object type of 

accident as a moving object one because of the similarity in the word vectors of the two accidents, while 

the “electrocution” category had lower F1 score compared to other classes because of the less frequent 

accident data in this category (Ma et al., 2021). Compared to SGRU and for some of the classes, other 

algorithms had an F1 of zero (Cheng et al., 2020). The single F1 score for some accident labels in Zhong 

et al., (2020) was low such as “Struck by falling object” (0.35 F1 score). 

To sum up, there are variations in the used performance measures. The variations in the data, data pre-

processing, training algorithms, and the testing measures, make a fair comparison challenging. In turn, it 

is harder to draw conclusions about which algorithms are better suited to apply in accident-related 

domains especially that there are not enough studies nor uniform methods. Furthermore, the difference 

in frequencies was found in severity, accident types, or causes is unique to the accident domain since it 

was found recurrent, and accidents happen stochastically. The variance in frequencies showed a high 

impact on the development and evaluation of ML models. 

Implementation of ML based analysis 

Model usage is one of the most central ML development processes (Bilal and Oyedele 2020). The 

reviewed literature presents two types of propositions to use ML based models in the analysis of accident 

reports. Models within the literature which suggested a possible use of the ML analysis results might be 

labelled as conceptual propositions, while those suggesting a precise implementation for ML based data 

analytics was termed a prototype. 

One such prototype was proposed for information retrieval and knowledge extraction (Kim and chi, 

2019). In this case, the authors assigned semantic roles for the elements that characterize the accident and 

defined the roles as predicates (i.e., “accident result,” effector “hazard object,” location “hazard position,” 

and purpose “work process”). Another model was presented as an integrated framework of accident type 

classification, feature raking and calculating the cascading effect on project tasks based on the effect the 

risk factors have on the time of a task (Ma et al., 2021). A similar approach was implemented as a rule-

based safety recommendation that was developed based on the safety management and known causes 

integrated with data mining of accident causes (Tang et al., 2021). The latter requires the interpretation 

of experts for the recommended safety instruction while an expert survey showed a positive response in 

terms of benefit to the management of safety (Tang et al., 2021). Accident reports and ML clustering 

were used together for virtual reality (VR) safety training scenario generation (Mo et al., 2018). The 

grouping of variables created potential accident scenarios that could be built into the VR training 

environment. 

On the other hand, a decision-making scheme, based on the ANNs predictions and expert opinions fed to 

a fuzzy decision scheme qualifies as a conceptual implementation (Ayhan and Tokdemir, 2019). In this 

case, the decision categories depended on the predicted severity. If the decision-making scheme predicted 

a fatality, Ayhan and Tokdemir (2019) suggested that the construction should stop until an investigation 

is thoroughly done to eliminate the danger. Another implementation was suggested to predict risks for 

projects and individuals based on information about gender, age, experience, construction type, 

employment count, day of the week, and month (Choi et al., 2020). The proposition assumes that this 



 

 

information could be retrieved at the construction entrance terminal. Zhu et al., (2021) recommended 

using the RF prediction rules for accident severity prediction to assess occupational risks and prevent 

injuries.  

Another usage suggestion for a RF model prediction was as a leading indicator for high-risk projects in 

the company (Poh et al., 2018). Baker et al., (2020a) and Baker et al., (2020b) proposed using severity 

and accident type classification by practitioners who do safety planning. The model is argued to be 

suitable for safety planning by identifying the task, tools or equipment, and working circumstances 

(Baker et al., 2020a, Baker et al., 2020b). Another proposition was to use the classification of incident 

reports as part of a digital strategy to help managers extract information about near misses and increase 

awareness and learning on-site (Fang et al., 2020).  

Kang and Ryu (2019) proposed the ML model as a prediction model for accident types but few ML 

models considered within the literature were developed to classify the accident reports with labels related 

to the accident causes (Zhang 2019, Zhang et al., 2019, Zhang et al., 2020, Zhong et al., 2020). Shrestha 

et al., (2020) formulated the ML classification into a framework of upstream precursors linked to accident 

type, energy source, and severity. The latter factors are supposed to be solved accident hazards at the 

design phase. 

The literature showcases promising suggested implementation for applied ML in construction accident 

reports. However, it can be found that only a few propose a concise prototype. Moreover, the complexity 

and constraints of the context for implementing ML based analytical models should be considered given 

the domain specific complexities associated with the construction industry noted previously - but this is 

scarcely done in the existing literature. For example, solving hazards at the design stage would probably 

influence the design process and the involved professionals. Alternatively, extracting knowledge from 

the collected report text would first require a domain specific design for an information extraction 

application. 

DISCUSSION 

This section intends to analyse the previous layout of the literature specially to answer the research 

question: what are the requirements of a ML based analytical model using accident report data if it is to 

be implemented a representative contracting company?  The analysis was designed backwards to respect 

the structure of the paper, first discussing the implementation of ML based analytical models and ending 

with the data characteristics. 

By analysing the current literature on the application of ML based analysis of accident reports within the 

construction industry context, it is found that several purposes for ML based analysis were presented. 

ML based analytical models were suggested for prediction, classification, clustering, and information 

retrieval.  Only four prototypes were presented (Kim and chi 2019, Mo et al., 2018, Ma et al., 2021, Tang 

et al., 2021). The implementation of ML based analysis is best presented as a prototype because it makes 

room for spotting potential improvements or any functionality problems.  

One of the examples that Kim and Chi (2019) presented showed that there is more than one consequence 

other than the injury - such as damage to infrastructure and material - while only one consequence was 

extracted from the accident report. This indicates that the labelling and classification of accident 

components are highly dependent on the labels that specialists assign to them. The same observation can 

be made in rule-based data mining examples (Tang et al., 2021, Xu et al., 2021b, Ma et al .2021). More 

risk factors and consequences could be hidden within the text but not extracted which is related to several 

factors such as the limitations in manual labelling (Zhong et al., 2020), defined extraction rules (Tang et 

al., 2021, Xu et al., 2021b), or the technology of NLP (Zhang et al., 2019, Xu et al., 2021b). 

Other implementations and observations involve the utilization of safety recommendations that are 

extracted from the data. For example, the decision to stop construction to investigate a predicted accident 

(Ayhan and Tokdemir, 2019), or to make sure that the safety management-level is sufficient (Tang et al., 

2021). To stop construction and investigate is worth it even if at a 50% chance that that would prevent a 

fatal accident but, in such case, an algorithm that allows for factors ranking and interpretability is better 

preferred to ANNs. Furthermore, predictions involving worker’s information might raise ethical concerns 

that need to be taken in consideration (Choi et al., 2020). Generally, the recommendation provided by 

knowledge extraction of task-safety-risk-factors is one important ML contribution. But to expect that the 

ML based recommendations for safety as intuitive and easily implemented by practitioners, is not 



 

 

realistic. Elements of digitalization and change management research are options to evaluate the adoption 

of ML models. 

Overall, the implementation of ML based models would benefit from feasibility and implementation 

analysis and the involvement of practitioners. Ideally, for applied ML models, task definition and its 

expected use, together with listing all assumptions are crucial to the successful implementation of ML 

based analytical models (Bilal and Oyedele 2020). On the theoretical level, there is a need for conceptual 

implementation frameworks such as ones that shift the focus from centralized computing platforms to 

overall systems of real time decision support (Chen, 2020). 

Testing the performance of algorithms is particularly crucial for the successful implementation of ML in 

the field of occupational construction safety. The reviewed literature showed that mostly averaged F1 

score was used in 11 out of 19 articles. However, the class imbalance appears on multiple occasions 

where even with a relatively high average F1 score, the algorithm misclassified single minority classes. 

This leads to the question as to whether the averaged F1 score is the best measure to measure classification 

performance in the applied ML to accident reports analysis. Gholizadeh et al., (2018) proposed using the 

ROC as a ML performance measure to visualize different combinations of errors. Gholizadeh, suggested 

that choosing the ML classifiers that have lower error rates for a particular class is costly from a safety 

perspective (such as severe injuries). The experiment also highlighted the benefit of ROC in maximizing 

the prediction accuracy of minority classes in unbalanced data sets in the construction accident reports 

data (Gholizadeh et al., 2018).  

The second question arising from the class imbalance then concerns the accepted level of accuracy to use 

the prediction models in real-life decision making. As mentioned earlier, a fair comparison for algorithm 

performance is not possible. This is the main reason for not making conclusions regarding which 

algorithm achieves the best performance. However, practitioners, safety experts, ML developers, and 

other stakeholders need to collaborate to set the requirements for ML implementation in terms of accepted 

performance levels. 

In the reviewed literature, many different algorithms have been adopted in studies with broadly the same 

purpose. The stated purpose is mainly to enable improved prevention of accidents. More than 30 different 

algorithms were distributed across the 19 reviewed studies. The most used algorithms are SVM (10), LR 

(7), RF (5), DT (5), NB (6), KNN (6), and, followed by 12 others and variation of CNN and LSTM deep 

learning algorithms. Eleven studies used more than three algorithms. However, it is difficult to establish 

why and how specific algorithms were used. The series of adopted algorithms is not consistently 

accompanied with proper justification of the selected algorithm but appears to be a result of different 

experimental approaches. The different algorithms have been internally tested on the given dataset and, 

in many cases combining more than two algorithms. This experimental approach and using a combination 

of algorithms is a shared property with other machine learning studies (e.g., Portugal, 2018).  

The review showed a promising application of deep learning algorithms (e.g., BERT, C-BiLSTM, SGRU, 

HAN). However, the benefit of applying deep learning as opposed to other ML algorithms is yet to be 

established. The word embedding theme in data pre-processing is to train word embedding algorithms 

with domain specific corpus capture domain specific terminology more efficiently. However, it is 

challenging to argue for a clear and consistent algorithm choice because a comparison would not reveal 

much about the ML models due to differences in the data sources, pre-processing, and applied algorithms' 

variations. This hinders the process of drawing conclusions about the performance of ML and the 

applicability of ML based analysis in safety processes. 

As noted earlier, the data characteristics of the source, volume, and format differs considerably between 

the reviewed articles. Also, there are differences in the pre-processing stage, which is the step that sets 

the basis of the entire following analysis. By analysing the literature, it can be noted that the data can be 

different in the structure (i.e., labelled or unlabelled), the type of injury (fatality, near-misses, accidents), 

or the data source (single or multiple companies, national registries). There are brief justifications for 

choosing the pre-processing methods, but more these explanations need further elaboration in order to 

understand the consequences of the methods, especially if the final ML interpretation is to be valid and 

closer to practice. 

The critique of the notion of “unbalanced” when resampling lies in the implicit assumption that a 

phenomenon should generate balanced datasets, but this is not the case in the causes, types, and 

consequences of accidents. The methods of ROS, RUS, SMOTE and labelling more instances to balance 



 

 

the dataset imply that the ML designer moves into an unknown ground by assuming similarities in 

different parts of the studied phenomenon. Future conceptual development of ML for accident analysis 

needs to investigate ways ML based analysis can understand accidents with the raw data. And reflecting 

on the consequences of using resampling methods. Zhu et al., (2021) insight into the proneness of the 

SMOTE method to overfit indicate such consequences especially at the performance evaluation stage. 

The identified problems in data pre-processing are specific to the context of accidents in the construction 

industry and require further investigation. 

CONCLUSION AND FUTURE RESEARCH 

This article has endeavoured to explore the possible requirements for the development of a ML analytical 

model that might be implemented to improve occupational construction safety. The review and analysis 

of the literature on applied ML on accident reports show there are multiple purposes for using ML based 

models including the classification of accident causes, accident type and consequences, prediction of 

severity, and extracting information from textual accident reports.  

The main limitation of this research is the narrowly targeted focus that resulted in only a limited number 

of papers to be reviewed. Four main prototypes were presented, the extraction of accident elements, risk 

assessment on the project schedule, rule-based safety recommendations, and VR safety training scenario 

generation. Few conceptual propositions were also presented as decision-making schemes when the ML 

based models predicted severe accidents. However, applying ML in the construction industry, would 

benefit from incorporating a standardized development method. 

Most importantly, applying ML based analytical models in the construction industry for accident 

prevention purposes depends upon a clear definition of the ML task, its intended use and associated 

ethical concerns. Moreover, interpretable ML algorithms are better suited to interpret safety 

recommendations. Such developments might lead to a clarification of methodologies in terms of pre-

processing and ML algorithm employment. As the literature on ML analysis demonstrates, developing 

ML based analytical models without careful feasibility studies and the involvement of relevant 

stakeholders has a noticeable negative impact on the methodological choices of data pre-processing, 

algorithm choice, ML performance evaluation, and context constraints. This is probably a general 

requirement that ML applied models in any domain should satisfy, but from a safety angle, this 

requirement is strictly necessary in the domain of construction. 

Regarding accident reporting in construction industry, the differentiated frequencies relating to the 

severity, the accident type, and the causes stand out as problematic. This variation in frequency creates a 

need to use specific ML performance measurements such as ROC. This was found to maximize the 

prediction accuracy of minority classes while F1 score showed to be low for single class classification. 

Moreover, the review has suggested that future empirical research should consider whether domain 

specific dictionaries should be used in word embeddings in the pre-processing stage. Finally, the review 

suggests that a ML model performance threshold needs to be agreed amongst the industry-specific 

interests and stakeholders. Further research could usefully carry out implementation studies on safety 

processes and management in construction companies. Of particular interest in such studies would be 

frameworks of integrated centralized computing platforms that are constantly fed with real time accident 

report data. From a methodological point of view, more experimental studies are needed to in order to 

draw firmer conclusions about the best ML methods to fit the domain specific context. 
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Machine learning (ML)-supported accident prediction models appear as an alternative 
to the much older accident causation models (ACMs).  ACMs represent a 
simplification of accident processes and resulted loss and play an important role in 
accident investigations and identifying potential risk factors.  This effort investigates 
ACMs and ML results of accident reports analysis in relation to each other and aims 
at comparing the latter based on their level of causes, the relationship between causes, 
and the predictability of severity.  A framework of understanding of these main 
processes and their challenges is provided, which is also used as a methodological 
framework for the comparison.  The comparison is based on a desk study of literature 
and material on the two types of models.  ACMs are different in typology, levels of 
causes, and the logic through which the analysis of the events that have taken place is 
conducted.  Many ML prediction models in construction not only provide predictions 
but also result into structures of features which work as predictors, e.g., decision trees.  
ACMs and ML are different in the task they perform.  ML models in the literature are 
focused on predicting the severity of an event while missing the identification of 
prevention measures.  ACMs focus on the occurrence of unwanted events and lack the 
ranking of important features.  Finally, ML analysis of accident reports need ACMs as 
a theory to shift focus to risks instead of severity, while interpretable ML algorithms 
(e.g., RF) appear more capable of complex representations of contributing factors.  
An unsolved issue is the random element involved in most accident processes. 

Keywords: accident causation model; machine learning; occupational accident 

INTRODUCTION 
Recently, there has been a noticeable increase in the number of publications about the 
topic of ML in the construction industry, including occupational accidents and safety 
during construction (Xu et al., 2021), and structural health monitoring and job safety 
management (Hou et al., 2021).  This trend was also observed in publications on 
applied ML for the analysis of archival data and surveys of work-related accidents 
(Sarkar and Maiti 2020).  On the other hand, accident causation models have guided 
analysis and learning from accidents for many years.  ACMs play an essential role in 
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identifying causes and processes in which events take place (Kjellen and Albrechtsen 
2017, Fu et al., 2020). 
ML and ACMs have been equally criticized.  ML was found to be shortcoming in 
interpretability, data quality concerns, the need for concrete use cases and the lack of 
required integration with domain and expert knowledge (Vallmuur 2015, Bilal et al., 
2016), as well as generalizability (Xu et al., 2021, Sarkar and Maiti 2020).  ACMs are 
different in typology and levels of analysis and have been questioned in terms of their 
components, accident path representation and their applicability (Fu et al., 2020). 
So far, the literature on ML applications within the domain of accidents reports has 
been focused on analysing and experimenting with algorithms without the perspective 
of ACMs as a theorical lens.  The role of the theory of ACMs is not being adequately 
addressed in the current literature.  The structure and components of ACMs provide 
attention to the important factors for prevention purposes and guide the process of ML 
analysis and use cases.  Similarly, ACMs have not been examined in relation to the 
contribution of ML applications in understanding accidents.  The availability of large 
volumes of data has the potential of not only unfolding causes behind accidents but 
also contributing to the development of added value to ACMs.  Therefore, this 
research will investigate the role of ACMs as a theoretical framework for the ML 
results of analysed reported accidents in the construction industry, as well as what can 
be learned about ACMs from ML.  We conduct a comparative desk study of the 
literature covering ML application to accident reports in the construction industry and 
ACMs in terms of their level of causes, the relationship between causes, and the 
predictability of severity.  This will contribute to conceptualizing ML models in the 
lens of ACMs. 

METHOD 
The article is based on a desk study of the literature of applied ML in the analysis of 
construction accident reports and ACMs.  The literature review and discussion were 
done in a synthesized problematization method (Alvesson and Sandberg 2011).  The 
ML models are based on a literature review and the systemization of the purpose of 
the ML, the included features, and the ranking of important factors.  ML has been 
applied for the prediction of severity, the classification of accident causes, and the 
extraction of information from textual data.  The themes are presented for an in-depth 
analysis.  ACMs were selected based on crossing the models which were reviewed by 
Kjellen and Albrechtsen (2017), Fu et al., (2020) and Woolley et al., (2019).  Three 
models were selected, based on the types of ACMs and their common application in 
the construction industry. 

Accident Causation Models 
ACMs are simplified representations of the process in which risk result in accidents 
and loss (Kjellen and Albrechtsen 2017).  ACMs have been used in accident 
investigation and analysis to uncover how and why accidents happen.  In the 
construction industry and in occupational accidents contexts, there are a few models 
that have been commonly applied.  Woolley et al., (2019) reviewed the most common 
accident causation theories in the building industry.  The review revealed that linear 
models are more dominantly used in the construction context when compared to 
nonlinear system-based models.  The linear models included ones such as the Domino 
Model.  The models that the Woolley et al., (2019) refer to as complex linear and 
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organizational factors-related, include the Swiss Cheese Model (SCM), and the 
Systems Model of Causation. 
Hopkins (2014) reviewed the paradox of major accident investigations.  The author 
distinguished between two meanings of accident causes: sufficient causes and 
necessary ones.  Necessary cause or the but-for one is the factor that without having 
existed, an accident would not have happened.  Moreover, Hopkins (2014) illustrated 
that most ACMs are formulated within this logic (such as the SCM) and that the but-
for logic works best with technical factors, but it becomes harder to assign a necessary 
cause with organizational distant factors because they are subject to expert judgement.  
Woolley et al., (2019) also found that distant regulatory and association’s related 
factors were not present in the construction context.  Although accident analysis is 
done for the purpose of learning, they do not seem to be designed to make 
recommendation for future accident prevention, nor do they identify relationships 
between company, management, and staff levels as higher levels of causes.  This 
article will focus on the SCM as a linear model, and the Bow-Tie model as energy-
based model (Fu et al., 2020). 
The Swiss Cheese Model (SCM) 
SCM (Reason 1997) is an energy-based model, according to the classification of 
Kjellen and Albrechtsen (2017), but categorized as a linear model in the review by Fu 
et al., (2020).  A linear model is one that consists of stages or levels of causes and 
corresponds to a chain of logical sequence that can be clearly examined.  The 
paradigm of SCM (see Fig 1) explains accidents by giving an understanding of event 
occurrence through barrier failures all the way, starting from organizational factors to 
unsafe acts.  Errors and violations function as active failures at the end of the system, 
while the latent conditions are the ones that exist but are undetected because the 
barrier had not been activated.  The logic of the SCM is that accidents happen when a 
combination failure exists on all levels together at once.  If a barrier was active at one 
of the levels, the accident could have been prevented.  The first level starts with top 
level decision makers, followed by designers and planners, line management, 
operations and maintenance, and local faults (Fu et al., 2020). 

  
Fig 1: SCM, Fu et al., (2020)                       Fig 2: STAMP, Fu et al., (2020)  

Systems-Theoretic Accident Model and Processes (STAMP) 
The STAMP model (see Fig 2) is known to belong to the system-based causation 
models (Kjellen and Albrechtsen 2017), and is categorized as nonlinear (Fu et al., 
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2020).  This model’s paradigm views accidents as being caused by dynamic 
equilibrium of system control that exist within an adaptive socio-technical system 
(Leveson 2004).  The model consists of three key components (constrains, control 
loops and process models, and socio-technical levels of control) (Leveson 2004).  
Constraints are enforced throughout the interactions of the hierarchy of the system’s 
operations and travel downwards for operation control.  Moreover, the model is 
characterized by feedback loops that travel upward through the levels of the hierarchy 
of the system.  The levels of system included are inspired by Rasmussen's (1997) 
socio-technical system models but with adding a parallel side that is concerned with 
system development beside the system operation.  Accidents in the STAMP model are 
caused by failure at one of the main components of the models: either safety 
constraints are not adequately enforced (which might be influenced by a lack of 
proper control and process plan, or inadequate coordination), or accidents can be 
caused by inadequate control execution or feedback information (Fu et al., 2020). 
The BOW-Tie Model 
The BOW-Tie model (see Fig 3) is a practical analysis model.  The model analysis 
starts by identifying a hazard that exists in the organization or the surrounding 
environment.  The hazard is in central connection to the second component of the 
model, which is the top event that is at the centre of the BOW-Tie.  The model is built 
around this top event as threats and consequences should be identified.  Accordingly, 
prevention barriers are then identified on the left side of the top event to combat their 
corresponding threats.  In the same fashion, recovery barriers are placed after the top 
event.  Threats are defined as whatever causes the top event to occur, and the more 
elaborate the analysis of threats, the more consequences are taken in consideration.  
The model suggests that barriers prevent the threat from causing the top event to 
happen, or in the case of that happening indeed, the consequences could still be 
prevented (Fu et al., 2020).  Interestingly, the model does not assume that prevention 
barriers always function, but there might be a failure that is caused by an escalation 
factor. 

 
 Fig 3: BOW-Tie, Fu et al., (2020) 

The three chosen models represent a variety of common models in accident causation 
and understanding.  The SCM is levelled and assumes failure on all levels to cause the 
accident.  The BOW-Tie model assumes failure to prevent a particular threat to cause 
the accident.  The STAMP model is more procedural and assumes that safety 
constraints and feedback loops are needed to be enforced to prevent hazardous events. 
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Machine Learning and Accident Data Analysis 
The purposes of ML analysis within the domain of accident reports can (based on our 
conception) be divided in two different categories: A classification of accident 
severity, and a classification of accident type and information retrieval.  The 
predictive ML models in both categories are further analysed below in terms of the 
purpose of the model, algorithms they utilized, the factors that were involved in the 
ML modelling, and their importance ranking compared to the output variables.  The 
results of the review are summarily presented in Table 1. 
Classification of Accident Severity 
ML algorithms 
Shrestha et al., (2020), analysed the accident reports using ML as a method for the 
classification of severity and accident-related features.  The multiclass support vector 
machines (SVM) and the results were organized into four different categories 
(upstream precursors, energy source, accident type and injury severity) (Shrestha et 
al., 2020).  Zhu et al., (2021) used accident investigations which were organized into 
six subsystems, 16 factors, and 39 subfactors (see Table 1).  Ayhan and Tokdemir 
(2019) used artificial neural networks (ANNs) and conventional multiple regression 
for accident outcome prediction using a total of 149 attributes which were discretised 
into the main causes’ categories (see Table 1).  The accident outcomes were 
categorized into 7 different classes (namely, At Risk Behaviour, Near Miss, The 
Incident with Partial Failure, The Incident requiring First Aid, The Incident requiring 
Medical Intervention, Lost Workday Cases, Fatalities) (Ayhan and Tokdemir 2019). 
In terms of models' accuracy, considerable differences were found between training 
and testing accuracy; the testing accuracy dropped by 50% for the fatality class 
(Ayhan and Tokdemir 2019).  Zhu et al.'s (2021) best accuracy results were achieved 
by the AutoML algorithm, with 70% accuracy.  However, a misclassification problem 
was observed when the algorithm mistakenly classifies a large accident as a minor one 
Zhu et al.'s (2021).  Choi et al., (2020) used the value of the Area Under the Receiver 
Operating Characteristic Curve (AUROCC) metric; the RF achieved 0.9198 which is 
considered as excellent, as the ideal value of AUROCC is 1. 
Factors and feature ranking 
Shrestha et al., (2020) coupled accident causes with accident severity.  For example, 
pre-existing medical conditions were found to result in the most fatalities, although 
they happen in lower frequencies.  Another approach was to rank features according to 
the level of importance and in relation to accident consequence severity, by using the 
Pearson correlation coefficient, Random Forest (RF) and principle component analysis 
(PCA) (Zhu et al., 2021).  Feature ranking resulted in three different rankings in each 
of the latter methods, however, the common features are the type of accident (i.e., fall, 
electrocution, etc), Accident reporting and handling, Training and examination, and 
Safety culture (Zhu et al., 2021).  Choi et al., (2020)'s RF ranking of factors showed 
that the month in which accidents happen is the highest-ranking factor, followed by 
the employment size, age, day, and service length.  However, the employment size 
was observed to be highly ranked in all algorithms.  The latter factor was showing to 
be correlated to high accident rate in smaller projects while the level of fatality being 
increased in the project over 2000 employees (Choi et al., 2020).  Ayhan's and 
Tokdemir's (2019) choice of algorithm did not allow for feature importance 
demonstration.  The prediction results of ANNs are less explainable compared to other 
algorithms that indicate feature importance.  However, the conventional multiple 
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regression (which is a more interpretable algorithm) was not successful compared to 
the ANNs, based on R-square and mean percentage errors as performance criteria. 
Classification of Accident Causes and Information Retrieval 
ML algorithms 
Zhang et al., (2019) used single and ensemble classification algorithms for the 
classification of 11 accident causes; the causes were extracted from accident reports 
by a natural language processing (NLP) algorithm.  In addition, the objects mentioned 
in the passages of reported text were also extracted.  However, it was found that the 
performance of the NLP was not satisfactory (Zhang et al., 2019).  Another approach 
was to classify accident causes in combination with relevance to accident severity 
(Zhong et al., 2020, Kim and Chi 2019).  Kim and Chi (2019) exhibited a prototype 
for extracting the cause of an accident (hazard object), location (hazard position), 
when the accident occurred (work process) and the result (accident result).  They also 
identified the semantic roles and rules for the accident components in relation to the 
accident result and used the conditional random field (CRF) classification algorithm 
(Kim and Chi 2019).  Kim and Chi (2019) exemplified their prototype by using a 
tower crane fall query.  The information retrieval prototype was represented in terms 
of a statistical analysis of extracted information from the accident textual reports.  
Accident categories have also been analysed based on their causes and merged with 
weather related data and classified into four accident categories (Falls from height, 
Collision by objects, Rollover, Falling objects), (Kang and Ryu 2019). 
Table 1: Summary of ML models, data source, algorithms, and purpose 

 
1 Logistic regression (LR), Naïve Bayesian (NB), k-nearest neighbour (KNN), multilayer 
perceptron (MLP), Adaptive Boosting (AdaBoost) 

Factors and feature ranking 
The combination of a Convolutional Neural Network (CNN) and data mining 
provided deeper insights (see Table 1).  Latent Dirichlet Allocation (LDA) and Word 
Co-occurrence Networks (WCN) data mining methods were used to identify 
correlations between retrieved causal variables and to visualize the information 
(Zhong et al., 2020).  The data mining methods provided the organization of the 
results as a main topic (ex.  collapse of an object) and the corresponding actions (ex.  
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Collapse of object, Falls Work, Protect) and objects (ex.  Subway, Construction, 
Fracture, Equipment, Scaffold, Crane).  Furthermore, the WCN method showed 
insights into accidents and severity, for example scaffolding accidents are infrequent 
but tend to be sever and likely to result in a fatality (Zhong et al., 2020). 
The application of RF also revealed correlations thanks to the feature ranking 
possibilities (Kang and Ryu 2019).  The assailing materials, original-cause materials, 
unsafe behaviours, protective equipment, unsafe states, work contents, and diagnosis 
names were ranked highest on the scale of feature importance, whereas weather 
related variables were not found influential in the classification of accident types.  
Kang and Ryu (2019) further examined feature importance for every accident type.  
For example, work activities before falling were installation or maintenance of 
mechanical equipment and facilities but most fall accidents were caused by workers 
not wearing safety protective equipment. 

ANALYSIS 
This research aimed at investigating the role of ACMs in the application of ML in the 
field of reported construction occupational accidents.  At the same time, identify the 
relevant gained learnings from ML in relation to ACMs.  The BOW-Tie model (see 
Fig 3) is useful in the analysis of threats, hazards, consequences, the top event and the 
prevention barrier.  By comparing the BOW-tie typology to the ML model 
components, it can be observed that according to Shrestha et al.'s (2020) 
categorization, upstream precursors can be relative to threats while energy type to 
hazards, severity to the consequences and type of accident to the top event.  Similarly, 
some components of the BOW-Tie model can be found in Zhang et al., (2019) and 
Kang and Ryu (2019).  Accident type can be categorized as a threat or a hazard.  
Zhong et al., (2020) and Kim and Chi (2019) presented a linkage between accident 
types and the accident consequences.  Furthermore, the application of data mining 
resulted in finding and visualising the relationships between causal variables (Zhong 
et al., 2020).  The main topic in Zhong et al.'s (2020) analysis can be considered like 
the typology of threats in the BOW-Tie model and the corresponding actions to the 
top event, and the objects (such as the scaffolding) like hazards.  The latter features 
were linked to the consequences which is one step closer to the exhibited 
representation of the link between threats and consequences in the BOW-Tie model.  
Kim and Chi (2019) illustrated a more explicit setup for accidents’ features, thanks to 
the semantic roles and rules of accident components.  Simultaneously, it can be found 
that some factors and functions in the ML model are different from the structure of 
components and relationships within the BOW-Tie model.  Zhu et al., (2021) for 
example identified causes into categories related to the organization, safety training 
and contract management while the BOW-Tie model encompasses the immediate 
threats.  Although the ML representation of causes and their relationships can identify 
a link to between the hazard and the consequence (Shrestha et al., 2020, Zhu et al., 
2021, Choi et al., 2020, Zhong et al., 2020, Kang and Ryu 2019), which is similar to 
the structure of the BOW-Tie model.  But a major difference can be found in the 
ranking of features importance that can only be found in the ML representation. 
The SCM explains accidents by the concept of barrier failure that exists in multiple 
levels of the organization and influences human error down the chain.  The SCM 
shows to be comprised of higher levels of causation compared to the ML illustrations 
of accident causes.  The factors related to machinery, workspace, energy sources and 
weather (Shrestha et al., 2020, Zhong et al., 2020, Zhang et al., 2019, Kim and Chi 
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2019, Kang and Ryu 2019) all exist within the first layer of the SCM (see Fig 1).  
Attributes of human factors, risky behaviour, occupation (Kang and Ryu, 2019, Choi 
et al., 2020, Ayhan and Tokdemir 2019) can be categorized into the second layer of 
the SCM.  Only one effort in the reviewed literature (Zhu et al., 2021) has used 
variables related to the upper levels of the SCM.  The contract management variable 
(Zhu et al., 2021) belongs to the top-level decision-making layer.  However, the 
results feature ranking showed that the type of accident, Accident reporting and 
handling, Training and examination, and Safety culture are the most influential factor 
in accident severity predictability.  In terms of the mechanism in which accidents 
occur in the SCM logic, failure should happen on all the levels at once.  The presented 
ML literature attempts to couple the accident-related features with the severity in 
some type of a direct relationship (Shrestha et al., 2020, Zhu et al., 2021, Choi et al., 
2020).  However, the nature of this relationship remains ambiguous.  The RF 
algorithm showed the biggest potential in understanding relationships between ranked 
features, but this will need visualization of the ML model structure and the features 
that result from using the algorithm.  Moreover, the use of data mining methods 
(Zhong et al., 2020) seems promising in visualizing relationships between causal 
variables, but the factors used in Zhong et al., (2020) only cover the bottom level of 
causation, which does not reveal much about the SCM. 
There are two major differences between the analysed ML literature and the SCM and 
the BOW-Tie.  Both ACMs have defence barrier activation as a requirement for 
prevention.  Secondly, a common feature in ACMs is that they do not differentiate the 
consequence of accident severity, but only focus on the occurrence of an accident.  It 
is evident that all ML models do not consider neither the prevention barrier nor the 
barrier failure.  Shortcomings in identifying prevention is not necessarily originating 
from ML but it could have been noticed if ACMs were used as a framework of the 
data analysis.  It has been acknowledged that accident investigations might skip the 
preventive recommendations (Hopkins 2014).  Suggesting measures that are further 
from the accident’s technical circumstances becomes subjective and lacks concrete 
evidence - although Hopkins (2014) suggested recommendations can be reasonably 
made, even in the absence of evidence going beyond the particular case.  This seems 
problematic because the consistency of the single report is then maybe compromised. 
ACMs assume and promote severity as a stochastic element and impossible to be 
predicted.  On the contrary to the reporting schemes that allow for reporting for the 
level of severity.  Industrial reports sometimes encourage to report lost days which can 
have an impact on what the company reports.  This tendency to focus on severity is 
reflected in the ML examples reviewed in this article (Shrestha et al., 2020, Zhu et al., 
2021, Choi et al., 2020, Ayhan and Tokdemir 2019).  Although the ML literature 
claims success in predictions but the internal validity of 63% and 70% seems arbitrary 
and needs further proof of prediction success.  Therefore, what should be focused on 
in the ML application is to find alternatives to severity classifications such as the 
modelling of risks, learning more about the prevention process, and most importantly, 
to prevent the accident from happening foremost by adopting the paradigms of ACMs. 
ACMs had been constantly reviewed and more causation layers were introduced.  
More remote levels of causes which are further from the accident environment (e.g., 
regulations and governmental causes such in the STAMP model (see Fig 2)).  The 
STAMP model is designed into feedback loops and constrains.  Although Zhu et al., 
(2021) featured higher levels of causation but the levels of causation of the STAMP 
model extend back to governmental and regulatory levels.  In the construction 
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industry, the STAMP model had not been detected (Woolley et al., 2019).  This might 
be due to that system thinking was not used in accident investigations and causation 
analysis.  Furthermore, system models are diverse and lack the conceptual unity that 
would allow their use in qualitative accident predictions (Grant et al., 2018).  The 
causes of accidents in the STAMP model are procedural and they seem applicable 
since the model component are identifiable functions in almost every work situation.  
But the latter miss the definitions of simple measurement and a benchmark of 
comparison, especially for the personnel doing accident investigation. 

CONCLUSIONS 
By the review of ML and ACMs in relation to each other, it can be found that ML 
analysis of accident reports can learn from the components of ACMs to identify 
prevention measures.  For further impact and concrete use cases, ML development 
needs to be guided by ACMs.  Most importantly, the prevention component which is 
represented in the BOW-Tie and SCM models would have been detected if ACMs 
were used as a framework.  The ML results appear to be more of a descriptive nature 
and especially useful in the classification of accident type and severity as well as 
information retrieval.  However, a valuable contribution is found in defining the 
relationships between hazards, accident types and severity.  Future ML analysis is 
suggested to be more focused towards the mapping of risks rather than classification 
of accident types and severity.  The adaptation of ACMs such the BOW-Tie model 
could aid ML models to be developed further from severity and more towards the 
identification of risk and heir corresponding prevention barriers.  Moreover, ACMs 
can be improved by the ranking of features and visualisation properties offered by 
data mining and the more explainable ML algorithms such as the RF.  This conclusion 
would also mean that it is better deemed suitable to use more explainable ML 
algorithms rather than variations of ANNs.  Knowledge about the importance of 
causation levels in ACMs would probably fill the gap of reporting distant factors.  The 
more is known about the relationship of further factors from the construction site, the 
more these factors will be detectable by reporting personnel.  The analysis points to a 
very important gap in the practice of the reporting of prevention measures, because 
unless the reporting include suggestions for how an accident can be prevented, less 
can be learnt from past experiences. 
The paper is limited by the types of ACMs which were analysed.  ACMs are within a 
developed field and different models could be analysed in a similar manner.  The ML 
models are analysed in terms of algorithms, factors, and feature ranking only.  Future 
research can highlight an in-depth analysis of the structure of algorithms to be 
compared with ACMs structure. 
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ABSTRACT 
Occupational accidents continue to be an unresolved problem in the Swedish construction industry, 
despite a whole range of routines, campaigns, education, management appraisals, authorities’ 
enforcement, networks, and research in place. While registered accidents are less frequent, there is a 
widespread willingness to strive for better performance. A potential solution is to apply more robust 
data analytics to the large company occupational accident registers, complementing existing regular 
analysis. Machine learning (ML) can provide a promising solution for strengthening data analysis, and 
international prototypes of such systems are emerging. However, there is a need to appreciate local 
and corporate concerns, and the ML development method “Cross Industry Standard Process 
Development Method” (CRISP-DM) appears to offer just that. This paper aims to analyse experiences 
and challenges in using the first phase of CRISP-DM, i.e., “business understanding”. The sociomaterial 
approach serves as the framework of understanding and is supplemented with accident research and 
ML development concepts. Methodologically, the paper draws on an ongoing research project to 
develop a ML prototype for occupational accident analysis. It quickly surfaced that CRISP-DM’s 
“business understanding”, while asking relevant questions in the company context (such as the goal 
for the model and the relative application), was too general to provide developmental guidelines. We, 
therefore, shifted from a top-down to a bottom-up approach, where knowledge on accident 
registration procedures and registered accidents became the starting point for iterative prototype 
development. Also, early challenges were to understand the registered data extracted from standard 
software with limited transparency, and tackle register entries of different quality. Apart from CRISP-
DM’s slightly idealistic approach to a company context, it is important to appreciate the classical 
decoupling between top management and (bottom) project levels in Swedish contractor companies. 
 
Keywords: accidents, machine learning, Sweden, CRISP-DM, construction, accident register 
 
INTRODUCTION 
ML is receiving remarkable interest in safety research as a new approach to improve the prevention 
of occupational accidents (Goerlandt et al. 2020). The capability of analysing large amounts of 
accident reports appears to bolster this aspiration. However, preventing occupational accidents is a 
very mature discipline, which appears to function well alongside the continuing unsolved occurrence 
of accidents (Judson and Brown 1944, Hovden et al. 2010, Lingard and Wakefield 2019, Hasle et al. 
2021). There is a risk of reinventing the wheel, repositioning the same prevention proposal repeatedly, 
disregarding central dynamics of the work environment context – as in Lingard and Wakefield (2019) 
and Hasle et al. (2021), proposing a better integration with design, project management, and 
operations management to lever accident prevention. Therefore, there is a need to appreciate the 
local and corporate context and their often-contradictory dynamics. ML software development 
appears as sufficiently malleable to meet exactly that requirement. In particular, the ML development 
method CRISP-DM is of interest, as it is one of the most used methods. The method of CRISP-DM starts 
with the “business understanding” stage for setting up developmental requirements and plan for the 
development and deployment stages. 
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Therefore, this paper aims to analyse experiences and challenges in using the “business 
understanding” phase of CRISP-DM to assure a solid contextual embedding and an appreciation of 
local dynamics. A sociomaterial approach serves as the framework of understanding, supplemented 
with accident research and ML development concepts. The context of a contractor company is indeed 
complex (Lingard and Wakefield 2019). Therefore, methodologically, the research adopts a bottom-
up approach. The paper draws on an ongoing research project aiming at developing a ML prototype 
for occupational accident analysis.   

Firstly, the paper contributes with an understanding that CRISP-DM’s “business understanding” 
is too general to provide sufficient guidelines for ML development – even relevant general questions 
of the company context (e.g., the goal for the business and the relative application) are indeed asked. 
We, therefore, shifted from a top-down to a bottom-up approach, where knowledge on accident 
registration procedures and registered accidents became the point of departure for iterative 
prototype development. Secondly, it highlights the difficulties in understanding registered data 
extracted from standard database software with limited transparency, and tackling register entries of 
different quality – which echoes previous research on the importance of the reporter’s interpretation 
(Dekker 2015, Jacinto et al. 2016). Thirdly, it appreciates the classical decoupling between top 
management and the building project level in Swedish contractors. Integrating accident prevention at 
the operational level is not a simple task (Hasle et al. 2021). 
 
METHOD 
The overall method is an interpretive approach (Alvesson and Kärreman 2007). A concept-centric 
literature review was conducted (Webster and Watson 2002) to review the status of ML-based 
solutions for accidents report analyses. The literature review was connected to the application of ML 
in analyzing reported accidents in the construction industry. For the empirical context, five interviews 
were carried out: four with safety engineers and one with a safety strategist at a high level in a Swedish 
contractor company. The questions for the interviews were developed towards the unfolding of the 
meaning of safety, accident response process, reporting process and quality, and the expectations 
from a ML-based prototype. Moreover, the ML questions and discussions were focused on developing 
a data-driven prototype, inspired by the business understanding framework of CRISP-DM and the 
recommended practice (RP) framework (DVN GL AS 2020). 
 
THE STATUS OF ML DEVELOPMENT METHODS 
ML is generally defined as the exploration of algorithms enabling computing systems to “learn” and 
make data-driven predictions by building a model from a sample dataset (Curtis and Scheinberg 2017). 
Computer systems that utilise ML automatically improve through experience (i.e., new domain data) 
(Witten et al. 2017, Portugal et al.  2018). ML is frequently classified into supervised, unsupervised, 
and hybrid (Kakarla et al. 2021). Supervised ML algorithms are “trained” and validated using labelled 
datasets with known reasoning of the application domain (Kakarla et al. 2021). Unsupervised ML 
analyses unlabelled data under assumptions about its properties (Jordan and Mitchell 2015) by finding 
hidden patterns in the data and developing models “on its own” (Portugal et al. 2018). Hybrid ML 
mixes several approaches (e.g., semi-supervised and reinforcement learning) (Gerard 2021). 

There has been an increasing interest in developing ML models and prototypes for the analysis 
of occupational accident data within construction. Such recent prototypes can be largely categorized 
according to their purpose, i.e., classification, prediction, or information retrieval. For example, ML 
prototypes have been deployed for the classification of accident categories (Kang and Ryu 2019, Zhang 
et al. 2019), severity, type (Shrestha et al. 2020, Zhong et al. 2020), energy source, and related 
upstream measures (Zhong et al. 2020). When it comes to prediction, ML models have been developed 
to predict accident outcomes (Ayhan and Tokdemir 2019), the likelihood of fatality (Choi et al. 2020), 
and accident severity (Zhu et al. 2021). Finally, a ML prototype for information retrieval covers the 
hazard object and position, work process, and accident result (Kim and Chi 2019). 



Proceedings of the Joint CIB W099 & W123 International Conference 2021: 
Changes and innovations for improved wellbeing in construction 

 

45 
 

In all of the aforementioned (and other) cases, the developmental process (incl. the choice of 
algorithms, dataset preparation, and modelling) was mainly goal-informed. However, the 
contextualization of this developmental process and its constituents (e.g., the algorithms) emerges as 
a major issue. The conceptual matching of algorithms to a specific occupational accident-related 
problem and dataset is rarely carried out; their suitability is not contextually evaluated – the 
algorithms are rather selected on an experimental, trial-and-error process, lacking a systematic 
development method. Such an approach could lead to choices based solely on performance metrics 
(accuracy, error) prone to overfitting and not necessarily capturing contextual specificities. Moreover, 
“repairing” datasets (e.g., under- and oversampling) is sometimes employed without considering 
whether datasets maintaining their initial properties (such as sparsity) can represent reality and 
inform the algorithms more meaningfully. Things are even exacerbated by an overreliance on internal 
validity testing and a lack of external testing on performance metrics and prediction accuracy. In 
summary, the development of ML prototypes for the analysis of occupational accidents in 
construction largely lacks, in most cases, the framework of a specific methodology. 

An exception to this rule can be the development of ML prototypes according to the CRISP-DM 
methodology; CRISP-DM dictates a series of six steps (business understanding, data understanding, 
data preparation, modelling, evaluation, and deployment) (Martínez-Plumed et al. 2019). These steps 
can account for a contextualization of the developmental process, starting with the initial step of 
business understanding – and thus offer a way to ameliorate the previously mentioned shortcomings. 
CRISP-DM can be considered to go beyond goal-directed development (Martínez-Plumed et al. 2019) 
by introducing systematic steps aiding in a conceptual systematization and mitigating the dependence 
on a solely experimental basis. Based on the organized steps of CRISP-DM, other industrial models 
have emerged, such as RP (DVN GL AS 2020). The latter claims to be differentiated from CRISP-DM by 
the usability in applications comprising data-driven models developed using other processes while 
focusing on risk assessment and quality assurance of data-driven applications (DVN GL AS 2020). 
 
Business understanding 
The business understanding aims to define the business objective (Chapman et al. 2000), including 
defining the client’s goal and capturing the organization’s business status. In more detail, this step 
corresponds to different subtasks: determine business objectives, assess the situation, determine data 
mining goals, and Produce project plan (Chapman et al. 2000). The same steps are followed in RP but 
add concrete documentation requirements, including commercial, safety, and social constraints 
anticipated in the deployment (DVN GL AS 2020). 
 
Determine business objectives 
In this step, the analyst uncovers what the business goal for the customer is and answers collateral 
business questions related to the primary goal. Objective or subjective success criteria are decided 
from the business point of view (Chapman et al. 2000). RP introduces a so-called value proposition 
statement, which documents the intended user and why and how the application would be used. The 
value proposition might be documented together with the business context in the form of use cases 
and users’ stories (DVN GL AS 2020). The business context, objectives, and success criteria should be 
sufficiently and objectively defined at the end of this stage. 
 
Assess the situation 
Assessing the situation involves a detailed analysis of the resources, constraints, and assumptions 
related to the business objectives. This step should result in a series of outputs, including a list of all 
possible resources, a setup of project requirements, measurable and subjective expectations, risks of 
project failure, terminology, and cost-benefit analysis from a commercial perspective (Chapman et al. 
2000). RP (DVN GL AS 2020) views this step as a risk assessment of the intended and unintended uses 
of a deployed application. It is suggested that this step can be done in two different iterations, also 
connected to the followed step (determine data-driven goals). Identifying and documenting 
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stakeholders, available data resources, project requirements, project assumptions and constraints, 
suitable terminology, project risks, and the application design can be related to the modelling goals 
(high-level assessment). Defining the cost-benefit, failure modes, and legal and ethical consequences 
can be related to the modelling step from a technical-focused point of view (low-level assessment). 
All the deliverables of this step are required to be sufficiently identified and understood. 
 
Determine data mining goals 
This step must determine the objective of the data mining process in terms of data analytics linked to 
the business goal (Chapman et al. 2000). According to RP (DVN GL AS 2020), this stage requires close 
collaboration between domain experts and data analysis experts. At this point, the desired predicted 
target should be defined clearly together with the modelling success criteria – either objective, based 
on a low-level assessment, or subjective, based on a high-level assessment. 
 
Produce project plan 
A realization plan for the data mining goals is prepared to specify steps, resources, and possible 
iterations – while also developing a list of data analysis tools and techniques (Chapman et al. 2000, 
DVN GL AS 2020).  
 
MAPPING OF THE CONTEXT 
We are mainly interested in how accident prevention is embedded in the business setting when 
mapping the context. The contractor operates a project-based organisation. The building project is 
the most important value and turnover generator and cost transformer. The different building projects 
are produced in portfolios placed in divisions with slightly different business objectives, i.e., civil 
works, residential buildings, office buildings. The project commences with a contract with a client. The 
Health and Safety (H&S) work commences by documenting the way H&S will be organised in the 
project in a bid for the customer. Typically, no risk analysis is carried out by the safety engineers (SEs) 
this early; however, this is done once a contract is obtained. A particular job role, called BAS P 
(educated in design safety), is part of this process. From the beginning of work planning, the SEs 
inspect the plans with a H&S perspective. During production, the safety representatives (the so-called 
BAS U personnel – basic education for production) are responsible for a particular part of the building 
project and the building process. They collaborate with the on-site H&S, Quality, and Environment 
(HES) manager and the SEs. Together, they constitute a horizontal element of the H&S organisation 
and support the similarly horizontal building processes. H&S work is thus organised close to the single 
building project. Apart from this horizontal element, the company also encompasses a vertical 
hierarchy, where H&S is attached to several organizational levels. A central H&S unit is part of a 
corporate management HR unit. HES units are adjacent to several organizational levels. This cross-
organizational H&S apparatus works with behaviour issues, analysis and reporting, digitalization, and 
developing directives. In it, it is a common perception that accidents are mostly due to behaviours, so 
efforts are targeting this issue. Another workstream is related to analysing and reporting, as well as 
digitalization, driving projects, and the way the company benefits from machines and innovation. The 
third workstream is related to developing directive processes and procedures. 
 
The meaning of safety at the contracting company 
At the case company, all four safety engineers (SEs) answered that safety in the organization means 
that everyone should go home safe and injury-free after a working day, and planning for that is the 
most important thing. One of the respondents indicated the difference between what safety means 
in the higher levels of the organization and on the site management level. On the higher levels, there 
is much talk about safety coming first, changing attitudes and behavior – while for site management, 
prioritizing different tasks and meanings affects many skilled workers. 
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A normal working day 
A general remark regarded the respondents’ thinking about the effect of COVID-19 on a “normal” 
working day. For some of them, working from home seemed abnormal. Before the pandemic, a normal 
working day involved the planning for project safety, safety support to site management and 
production personnel, follow-up on risk documentation, contact with site and project management, 
and discussing with the workers about the work environment and the reason protective equipment 
should be used. The project’s risk assessment and work preparations must be ready, especially for 
those performing the work. There is a knowledge repository of tips and checklists of different subjects 
and tasks to help with planning. Often, if it is too cumbersome to search from the list, the site manager 
can ask the SE about the required information. Besides coordinating other tasks (such as the site 
economy), balancing what to take in and what to leave out is needed. It is better to use own knowledge 
first and then utilise the checklist to see if something was forgotten – the level of experience might 
determine how much of the checklist is needed. 
 
The response of the event of an accident 
The accident response routine is taken more seriously by the organization. There is a requirement for 
yearly training in the response process – although a respondent had not witnessed a severe accident 
in six years. The response depends highly on accident severity. In severe accidents, taking care of the 
injured comes first; people on-site also need attention to discuss the reasons and be involved in the 
investigation – for fact-checking, coming up with ideas for future prevention, and getting support in 
case of psychological shock. 
 
The reporting of accidents 
Accidents are reported internally through digital registering software. The responsible site manager 
initially does the registration, but the SE gets involved when needed. The reporter estimates what to 
fill in (e.g., a description of the event, information about the injured, prevention measures) and what 
to leave out. Most importantly, there is a list of fully defined accident causes, besides the possibility 
to comment in free text. In the portal, it is preferable to use the already defined options, as this allows 
one to look into the related statistics. The interviewee did not see the way free text can be used. 

In severe accidents, the software allows for five causes and five prevention measures that need 
to be filled in (not needed in less serious accidents). The interviewees said that the reporters fill in 
what they think the cause is and, most importantly, relevant prevention measures. For deciding about 
those, one of the interviewees said that the first thing is thinking about the individual. The individual 
is responsible for planning and thinking; then, the company must provide safe work conditions and 
create a safety culture that emphasizes planning and knowledge sharing. 

To decide on accident causes, the work environment plan helps check whether the work 
preparation was filled out properly and the risks were carefully estimated. However, there is a chance 
that all procedures were followed through properly, and the causes were person-related instead 
(“faulty acts”). The software can also guide on causes, but the filling in of information can differ 
according to the person doing it. Even if the causes and prevention measures are evident in the 
reporter’s mind, this does not necessarily translate to a detailed enough description. One of the SEs 
describes their reporting as detailed so that anyone who reads the report can understand what 
happened – and added that it is crucial to go down to root causes and not stay at the surface level. 
The “5 whys analysis” is used as an easy and quick way to narrow down to root causes and come up 
with helpful prevention measures. Nevertheless, not all reporters are experts in root cause analysis; 
therefore, in very serious accidents, SEs come in and help with unfinished cases and more careful root 
cause analyses. Also, for many of the reporters in the portal (e.g., site managers), the human factor is 
the main cause – they thus do not what has caused the respective person to act this way. 
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Status of the data use and safety objectives 
The accumulated accident reports are used in reporting key performance indicators by following 
statistics – but mostly on accidents that were severe or resulted in absence. In a recent use case, a 
sore card scheme was used to report the event type and find certain risk categories in different parts 
of the organization. Another use case to planning to purchase personal protective equipment (PPE) 
based on analysed accident reports. The company uses the Bowtie model for analysis, because it 
wanted to work with high-risk areas and detect where barriers can be set to prevent those risks from 
happening. As part of the reporting assurance, the reporting of severe cases is always secured by SEs. 
Otherwise, H&S managers keep track of their area and support the reports of single cases, besides 
following up with the safety function group. This indicates what needs improving, training, 
communicating, or developing IT tools. The focus for both severe and less severe cases is on the 
reduction of their frequency. 
 
The value of reporting of accidents and improvements 
The interviewees agreed about the value of learning from reporting and not experiencing the same 
accidents again – acknowledgement the importance of reporting and learning, taking out statistics, 
sharing the knowledge, identifying risks, and planning the resources for similar work steps. SEs also 
wish to report social-related issues, usually not part of the routine, such as harassment. There are risks 
when people do not feel good psychosocially. This is something that needs to be worked on within all 
workspaces across the sector. It is not easy to see and spot this type of situation, which is a risk for 
individuals and groups. However, another SE pointed out that reporting negative/positive 
observations, incidents, and accidents is a routine. In that way, the portal seems comprehensive for 
all categories – but it would be good to add safety rounds within the reporting software. Another 
comment about additional reporting was that people do not always want to report – e.g. when the 
accident is the person’s fault. 
 
Improvement in the safety process for accident prevention support 
Registering more events (incl. observations) can improve the reporting status, by making reporting 
faster and better in handling registered cases and coupling that with feedback and prevention. With 
more reporting and feedback, the work becomes more proactive and safer – e.g., when handling 
machines and material. 

One respondent mentioned that people on site should follow what was decided. There are 
prevention packages, but they are not always followed, mostly because people want to do the work 
first instead of taking more time for safety-related preparations. The respondent called this the “I will 
just do this first” syndrome. Another SE thought there is a need for better planning, but otherwise, all 
the tools and processes exist – just not fully used. The SE had a generally positive outlook, as in the 
last six years, the organization was more focused on safety, even resulting in zero accidents recently. 

 
Value proposition  
The safety strategist indicated that the company is quite advanced in collecting H&S data but still far 
from where it aims to be. The digital reporting software was introduced five years ago (a short period 
for a large company), but the company only started using the data and investigating its utilities, which 
creates more needs. Moreover, data quality and precision still need improvement, and only looking 
at the data and not reflecting on it can be suboptimal.  

The company’s top long-term priority is on behaviour, which according to the accident report 
statistics, is the most common cause of both minor and severe cases. Behaviour is hard to affect 
because the end-user is always a person, but the H&S organization, especially the SEs, can exert such 
an effect. Furthermore, fatalities are aimed to be at the level of zero. 
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ML potential 
In this part, the SEs were asked about their view of ML potential in analysing accident reports and 
their tasks. At the beginning of this set of questions, ML was briefly described for the respondents.  

One SE mentioned that there was potential in extracting statistics of what had occurred in 
incidents, observations, and accidents, grouping them according to the case or subject, and gathering 
all possible prevention measures instead of speculating on how to solve a problem. Double-checking 
whether something was forgotten can also be possible support. On the other hand, two respondents 
thought it was difficult to say what ML can offer for their work process – but one added that through 
all data across the whole company, it might be possible to pay attention to work steps or work tasks 
where there are many accidents or many people injured. 

The question was then reformulated to be more general about what a needed area of support 
could be. One SE answered that, in general, a lot of the work is about attitude and the way of thinking. 
It will be good to have tools to present information about the risks to the production people, make it 
more relevant, and even visualize it (pictures, animation) and engage them in their own work’s safety 
processes. Alternatively, there is much to be learned from negative and positive observations and 
finding the reasons behind not following the rules, even though they are known. 

When SEs were asked whether they wish to see their proposals as digital applications. One 
answered that everything is already digital. Another mentioned that the most important thing about 
a digital tool is that it is practical, it functions fittingly with the activities, and it provides something 
new – not only being something that needs to be done because the system requires so. 

 
Proposals and ML risks 
From a safety strategy perspective, involving information about the individuals in the data registration 
should be avoided. However, this can be tricky if there are ethical concerns. 

Understanding why people do not follow the rules is risky; it becomes a conflict if this 
information is handled as negative prevention towards the individual. The SE indicated that there is 
no answer for this concern. One of the perceived risks in creating new communicative meetings to 
show risks and narratives of accidents is workers and site management not having time for them or 
not finding them valuable. 

Another interviewee did not see any risks, only opportunities, e.g., a knowledge bank helping 
in planning in the early stages. The respondent also did not find ethical concerns since the focus of the 
reporting is on the accident. Even for accident-prone people, it is information that only the site 
manager or the safety engineer knows about and maybe take a private discussion with the individual. 

 
Satisfaction with the reporting 
It would be better if one reports in a more detailed, informative, and descriptive manner, so that even 
if someone not involved in the event can understand. If investigations do not arrive at causes and 
prevention measures, then extracted conclusions cannot be made. One SE indicated dissatisfaction 
because much more could have been reported – reporting rates differ from site to site. Maybe site 
management did not want to catch attention, which causes reporting rates to drop – even though 
there are many more reports now; 1000 in one division while, some years ago, there were only 27. 

As SEs support production and work with the portal, most of the reporting is done by site 
managers, site supervisors and maybe safety representatives. Many questions are very relevant for 
them, and they have another perspective of reporting and using the software. 

 
Success criteria for a protype based on the reports’ data 
From the strategist’s point of view, having the workers on board is the most important thing – maybe 
not every single worker, but at least a small group that had already tried a new tool and given 
feedback. Introducing new things in the construction industry is not very popular, and that is a risk but 
also a kind of attitude. Therefore, management needs to promote and try the new tools themselves 
and engage in communication. 
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COMPARATIVE DISCUSSION THAT CAPTURES THE CONCEPTUAL AND EMPIRICAL COMPARISON 
The business objective includes defining the client’s goal and deciding on the objective or subjective 
success criteria from a business point of view – or, according to RP (DVN GL AS 2020), a value 
proposition that defines users and use-cases. Based on the interviews, the safety strategist was chiefly 
interested in behaviour and fatal accidents, while the SEs’ propositions included the planning of work 
tasks and prevention, communication, and behaviour. Moreover, one of the SEs defined acceptance 
criteria for a new digital application, namely practicality, functionality connected to activities, and 
giving the feeling of added value to users. 

The first direct difference between CRISP-DM’s concepts and the empirical context can be 
summarized as singular versus multiple-goal orientation. CRISP-DM and RP encourage the data analyst 
to look for and specify a single business objective and client goal, whereas the contractor’s 
diversification on different products, different organizational levels, and the project-based 
organisation exhibits multiple goals and objectives. Notably, the project’s typical goal constellation 
would involve costs, time, and quality as prime objectives, whereas H&S and prevention of 
occupational accidents might be present but still play a minor role. The latter setting introduced 
ambiguity into the objectives of using a ML model and has to be embedded into “goal contradictions” 
rather than just a single goal. At the end of the first step of the business understanding, there is 
probably a need for iteration to sum up objectives and re-evaluate to make decisions on a common 
objective. The CRISP-DM guideline of deciding on the objective or subjective success criteria from the 
business point of view of the ML model assumes the active participation of the managers and 
employees in the development of the ML model, which is a feature our project does not encompass. 

The second step of business understanding requires a detailed analysis of the related resources, 
constraints, assumptions to the business objectives, risks of project failure, terminology, and cost-
benefit analysis from a commercial perspective. The recommendation of this stage is related to the 
resources of the H&S organisation, its members and most importantly, the data. There are resources 
to a certain level, but a detailed analysis of accident causes is rare. It is the corporate registration 
system that sets the limits for the effort. The constraints of the prevention activity are due to the 
business objectives of production, where time and cost own prevalence. Moreover, assumptions in 
the field of accident prevention are related to several different safety cultures in the project 
organisation (Koch 2013). At least two competing assumptions prevail in the interviews: first, that 
accidents are due to human error and therefore should be prevented by campaigns and other 
behaviour-oriented efforts, and second, that accidents can be prevented when systemically analysing 
the risks and making barriers for their impact. Furthermore, the interviewees showed conflicting views 
about risks associated with the latter prevailing safety assumptions. To sum up, analysts can extract 
information related to assumptions, practices, and data validity constraints. However, more 
requirements at this step seem challenging to define (such as the application design and ethical 
concerns), especially since most requirements need a vivid project and commercial benefits. 

The following step would be defining data-driven goals. At this stage, there must be a clear 
definition of the prediction target and an agreement about the model’s acceptable accuracy in 
achieving such a target. Based on the interviews and the latter analysis, the goal and constraints need 
to be defined beforehand. The many projects, product types, management levels, and other factors, 
make the context challenging to handle, and such liability and weakly defined phenomena make 
applying ML difficult. Moreover, the data status might not allow for a clear definition of the prediction 
target. Another iteration could be proposed to overcome this difficulty. If the situation assessment 
step had required a primary data analysis (besides listing detailed available data resources), it might 
be easier for the analyst and the case company to make the connection to concrete targets. 

One of the preconditions for a ML application is to make a critical difference in prevention work, 
i.e., that the system compiles a large amount of data and analyses it in an overview not offered in 
previous methods, practices, and systems. In this occupational accident context, this means coupling 
many building projects and units across time and space. The SEs function similarly across many project 
contexts, so their active use of a standard ML system might provide an additional critical contribution 
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to prevention. The similar concerns and goals across time and space, rather than just the compiled 
database, create the critical mass for the system. It is likely that even other datasets in the contractor’s 
system (e.g., quality data, production planning, and execution data) share this feature – a coexistence 
of a common database spread in space and time, but with similar goals. 

The previous analysis shows that much can be uncovered by asking domain experts about daily 
processes and experiences. However, to define business understanding goals and expectations of 
data-driven (ML) applications requires working on multiple organizational levels, especially in project-
based organizations. Adding an iterative step between the business understanding subtasks seems 
beneficial – otherwise, ethical, application design and data-driven goals, would remain ambiguous. 
Moreover, the current description of business understanding seems to target commercial gains at a 
strategic decision-making level. In contrast, in a large contracting company and on the operational 
level, the business understanding framework needs to and can be adapted to match the specific case.  
 
CONCLUSIONS 
This paper aimed at analysing experiences and challenges in using the “business understanding” phase 
of CRISP-DM; and as part of an ongoing endeavour to develop a ML-based system that utilises 
reported accidents for prevention. The interest in “business understanding” stems from intending to 
assure a solid contextual embedding and an appreciation of local dynamics (incl. variations in roles, 
competencies, and resources). Our sociomaterial framework of understanding was supplemented 
with accident research and ML development concepts, and the complex context of a contractor 
company was elected. Due to the contractor’s differentiation in business units and areas and its 
project-based production, it can be (as the interviews also showed) compared to a loose constellation 
of many small companies. Therefore, the method adopted was a bottom-up approach. 

The paper’s first result evaluates CRISP-DM’s “business understanding” as too general to 
provide sufficient guidelines for ML development. There are relevant questions to be asked in the 
company context, such as the goal for the business and the application domain, but little support can 
be found for more particular decisions on the ML system design. We, therefore, shifted from a top-
down to a bottom-up approach, where the iterative system development drew directly on practical 
experience and knowledge on accident registration procedures and registered accidents. The second 
result was the difficulties in understanding registered data in the standard database software, with 
limited transparency and different quality – complementing other research on the importance of the 
reporters’ interpretation. The third result is appreciating the classical decoupling between top 
management and the building project level in Swedish contractor companies. This hampers the 
integration of accident prevention in the operational level. ML systems should be designed to provide 
the coexistence of a common database and user experience spread in space and time, but with similar 
goals in large contractor organisations with many projects and job functions. The review of the 
“business understanding” in this case showed the need for two iterations within the process; one at 
the “determine business objective” step to agree on common goals, and the second at the “assess 
situation” stage to include primary data analysis for realistic data modelling goals and definitions. 
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